Project description:Mammalian aging is characterized by the progressive loss of tissue integrity and function manifesting in ill health and increased risk for developing multiple chronic conditions. Accumulation of senescent cells in aging tissues partly contributes to this decline as targeted depletion of senescent cells in vivo ameliorates many age-related phenotypes. However, the fundamental molecular mechanisms responsible for the decline of cellular health and fitness during senescence and aging are largely unknown. In this study, we investigated whether chromatin-mediated loss of transcriptional fidelity, known to contribute to fitness and survival in yeast and worms, also occurs during human cellular senescence and mouse aging. Our findings reveal that aberrant transcription initiation inside genes is widespread in senescence and aging. It co-occurs with changes in the chromatin landscape and formation of non-canonical transcription start sites. Interventions that alter spurious transcripts have dramatic consequences on cellular health primarily affecting intracellular signal transduction pathways. We propose that spurious transcription is a conserved hallmark of aging that promotes a noisy transcriptome and a degradation of coherent transcriptional networks.
Project description:Mammalian aging is characterized by the progressive loss of tissue integrity and function manifesting in ill health and increased risk for developing multiple chronic conditions. Accumulation of senescent cells in aging tissues partly contributes to this decline as targeted depletion of senescent cells in vivo ameliorates many age-related phenotypes. However, the fundamental molecular mechanisms responsible for the decline of cellular health and fitness during senescence and aging are largely unknown. In this study, we investigated whether chromatin-mediated loss of transcriptional fidelity, known to contribute to fitness and survival in yeast and worms, also occurs during human cellular senescence and mouse aging. Our findings reveal that aberrant transcription initiation inside genes is widespread in senescence and aging. It co-occurs with changes in the chromatin landscape and formation of non-canonical transcription start sites. Interventions that alter spurious transcripts have dramatic consequences on cellular health primarily affecting intracellular signal transduction pathways. We propose that spurious transcription is a conserved hallmark of aging that promotes a noisy transcriptome and a degradation of coherent transcriptional networks.
Project description:ATAC-seq of 79 primary samples obtained from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). Moreover, ATAC-seq of CD34+ HSPCs from 3 healthy donors are included. ATAC-seq was performed as described (Buenrostro et al., 2013) with a modification in the lysis buffer to reduce mitochondrial DNA contamination. Due to patient confidentiality considerations, the raw data files for this dataset have been deposited to the EGA controlled-access archive under the accession numbers EGAS00001007094 (study); EGAD00001011050 (dataset).
Project description:Bulk ATAC-seq was performed on human, chimpanzee, bonobo, and macaque stem cell-derived cerebral organoids. ATAC-seq was performed on day 60 (2 months old) and day 120 (4 months old) cerebral organoids.
Project description:We describe the accessible chormatin landscape in RAS-induced (RIS) and NOTCH induced senescence (NIS) using ATAC-seq. By expressing active NOTCH (N1ICD) in the context of RIS, we find that N1ICD antagonizes the formation of accessible regions in RIS. By performing co-cultures, we demonstrate that cells expressing a NOTCH1 ligand, JAGGED1, can antagonize the formation of RIS specific accessible regions.