Project description:CD25 (IL2RA) is a subunit of IL2 receptor complex, which determines the sensitivity of the receptor to IL2. Here, we investigated whether PRDM1, a transcriptional repressor implicated as a tumor suppressor in NK cell malignancies, directly represses CD25 (IL2RA). Using ChIP-seq, we identified a direct binding site of PRDM1 within 1st intron of CD25 (IL2RA) in activated primary human NK cells. We used DNA microarrays on two PRDM1α transduced NK cell lines (i.e. NK92 and KHYG1) to address whether PRDM1 transcriptionally represses CD25.
Project description:Neural stem/progenitor cells were isolated from the lateral ventricle wall of 4-6 week-old CD1 mice and grown as neurospheres under low density culture conditions. Test cells were transduced with bicistronic retroviral constructs for the over-expression of Bmi1 together with eGFP, and control cells were transduced with an empty vector construct expressing eGFP only. To identify genes, which are regulated by BMI1 in neural stem/progenitor cells, the gene expression profiles of neurosphere cells over-expressing Bmi1 were compared empty vector control cells using Affymetrix Gene mouse ST1.0 arrays
Project description:Sepsis is an exaggerated immune response upon infection with lipopolysaccharide (LPS) as the main causative agent. LPS-induced activation and apoptosis of endothelial cells (EC) can lead to organ dysfunction and finally organ failure. We have previously demonstrated that the first twenty amino acids of the Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APEX1) are sufficient to inhibit EC apoptosis. To identify genes whose regulation by LPS is affected by this N-terminal APEX1 peptide, EC were transduced with an expression vector for the APEX1 peptide or an empty control vector and treated with LPS. Following RNA deep sequencing, genes upregulated in LPS-treated EC expressing the APEX1 peptide were identified bioinformatically.
Project description:To identify gene expression changes associated with overexpression of miR-105 or MYC in MCF10A non-cancerous human mammary epithelial cells, we analyzed RNA isolated from engineered MCF10A cell lines that stably express empty vector, GFP, miR-105, or MYC by RNA-seq. Gene expression in cells overexpressing miR-105 or MYC was compared to cells expressing the empty vector or GFP, both of which served as controls in this experiment.