Project description:Glycolysis is the sole free-energy source for the deadly parasite Trypanosoma brucei and is therefore a possible target pathway for anti-trypanosomal drugs. Plasma-membrane glucose transport exerts high control over trypanosome glycolysis and hence the transporter is a promising drug target. Here we show that at high inhibitor concentrations, inhibition of trypanosome glucose transport causes cell death. Most interestingly, sublethal concentrations initiate a domino effect in which network adaptations enhance inhibition.
Project description:Expression of bumblebees (Bombus terrestris) from four colonies exposed to 3 different genotypes of the trypanosome parasite Crithidia bombi
2014-04-28 | GSE55035 | GEO
Project description:Trypanosome detection and characterization
Project description:A frightening resurgence of bed bug infestations has occurred over the last 10 years in the US. Current chemical methods have been inadequate for controlling bed bugs due to widespread insecticide resistance. Little is known about the mechanisms of resistance present in US bed bug populations, making it extremely difficult to develop intelligent strategies to control this pest. We have identified bed bugs collected in Richmond, VA which exhibit both kdr-type (L925I) and metabolic resistance to pyrethroid insecticides. LD50 bioassays determined resistance ratios of ~6000-fold to the insecticide deltamethrin, with contact bioassays confirming cross-resistance to several other labeled formulations. To identify metabolic genes potentially involved in the detoxification of pyrethroids, we performed deep-sequencing of the adult bed bug transcriptome, obtaining more than 2.5 million reads on the 454 titanium platform. Following assembly, analysis of newly identified gene transcripts in both Harlan (susceptible) and Richmond (resistant) bed bugs revealed several candidate cytochrome P450 and carboxyesterase genes which were significantly over-expressed in the resistant strain, consistent with the idea of increased metabolic resistance. These data will accelerate efforts to understand the biochemical basis for insecticide resistance in bed bugs, and provide molecular markers to assist in the surveillance of metabolic resistance.
Project description:Glycolysis is the sole free-energy source for the deadly parasite Trypanosoma brucei and is therefore a possible target pathway for anti-trypanosomal drugs. Plasma-membrane glucose transport exerts high control over trypanosome glycolysis and hence the transporter is a promising drug target. Here we show that at high inhibitor concentrations, inhibition of trypanosome glucose transport causes cell death. Most interestingly, sublethal concentrations initiate a domino effect in which network adaptations enhance inhibition. total of 5 slides, including 3 biological replicates and dyeswap
Project description:Our trypanosome yeast two-hybrid prey library was made by random shotgun genomic cloning. NOT2, NOT10, NOT11 and CAF40 were used as baits to screen the library by mating. Diploid progeny were subjected to selection, resulting in between 100 and 800 surviving colonies, from which inserts were amplified and subjected to high-throughput sequencing. This is a Multiplex Library identified using the following primers: >CZ5468-Not1 CTCTACCCATCGAGCTCGAGCTACGTCAACG >CZ5472-ZC3H38 TCGGGACATCGAGCTCGAGCTACGTCAACG >CZ5473-Tb927_7_2780 GAATGAATCGAGCTCGAGCTACGTCAACG >CZ5474-Not11 TGACATCCATCGAGCTCGAGCTACGTCAACG. Yeast 2-hybrid Interactions for NOT10 (Tb927.10.8720), NOT11 (Tb927.8.1960), XAC1 (Tb927.7.2780) and ZC3H38 (Tb927.10.12800)