Project description:Comparison of the whole genome gene expression level of an amoxicillin resistant E. coli strain with the wildtype it was derived from. The process of amoxicillin adaptation of E. coli MG1655 wildtype cells is further descibed in van der Horst, M, J.M. Schuurmans, M. C. Smid, B. B. Koenders, and B. H. ter Kuile (2011) in Microb. Drug Resist. 17:141-147. Resistance to amoxicillin was induced in E. coli by growth in the presence of stepwise increasing antibiotic concentrations. To investigate consequences of the aquisition of amoxicillin resistance the transcriptomic profile of sensitive and resistant cells was compared in the absence and presence of sub-inhibitory (0.25xMIC) amoxicillin concentrations was compared. Total RNA of 3 biological replicates of E. coli MG1655 wildtype cells and amoxicillin resistant cells cultured with (0.25xMIC) or without amoxicillin was hybridized on a 12x135k custom designed microarraychip against one common reference.
Project description:Comparison of the whole genome gene expression level of an enrofloxacin and tetracycline resistant E. coli strain with the wildtype it was derived from. The process of drug adaptation of E. coli MG1655 wildtype cells is further descibed in van der Horst, M, J.M. Schuurmans, M. C. Smid, B. B. Koenders, and B. H. ter Kuile (2011) in Microb. Drug Resist. 17:141-147. Resistance to amoxicillin was induced in E. coli by growth in the presence of stepwise increasing antibiotic concentrations. To investigate consequences of the aquisition of amoxicillin resistance the transcriptomic profile of sensitive and resistant cells was compared in the absence and presence of sub-inhibitory (0.25xMIC) amoxicillin concentrations was compared. Total RNA of 3 biological replicates of E. coli MG1655 wildtype cells and drug resistant cells cultured with (0.25xMIC) or without the drug was hybridized on a 12x135k custom designed microarraychip against one common reference.
Project description:The study was conducted on a model of Lactiplantibacillus plantarum, one of the most studied species widely used in the food industry as a probiotic microorganism and/or microbial starter culture. As a result of step-by-step selection from the L. plantarum 8p-a3 strain isolated from the «Lactobacterin» probiotic, the L. plantarum 8p-a3-Clr-Amx strain was obtained, showing increased resistance, compared with the parent strain, to amoxicillin-clavulanic acid (MIC 20 mcg/ml) and clarithromycin (MIC 10 mcg/ml). The L. plantarum strain DMC-S1 was isolated from the intestine of Drosophila melanogaster Canton-S line. Extracellular vesicles of this bacterium can play a significant role in the drug-resistance development and host-microbe interactions.
Project description:Comparison of the whole genome gene expression level of an amoxicillin resistant E. coli strain with the wildtype it was derived from. The process of amoxicillin adaptation of E. coli MG1655 wildtype cells is further descibed in van der Horst, M, J.M. Schuurmans, M. C. Smid, B. B. Koenders, and B. H. ter Kuile (2011) in Microb. Drug Resist. 17:141-147. Resistance to amoxicillin was induced in E. coli by growth in the presence of stepwise increasing antibiotic concentrations. To investigate consequences of the aquisition of amoxicillin resistance the transcriptomic profile of sensitive and resistant cells was compared in the absence and presence of sub-inhibitory (0.25xMIC) amoxicillin concentrations was compared.
Project description:Clavulanic acid is a clinically-important secondary metabolite used in treatment of infectious diseases. We aimed to decipher complex regulatory mechanisms acting in clavulanic acid biosynthesis through the analysis of transcriptome- and proteome-wide alterations in an industrial clavulanic acid overproducer Streptomyces clavuligerus, namely DEPA and its wild-type counterpart NRRL3585.
2022-11-02 | PXD032272 | Pride
Project description:Evaluation of amoxicillin-clavulanic acid antibiotic treatment on the gut microbiota in a murine model
Project description:Comparison of the whole genome gene expression level of an enrofloxacin and tetracycline resistant E. coli strain with the wildtype it was derived from. The process of drug adaptation of E. coli MG1655 wildtype cells is further descibed in van der Horst, M, J.M. Schuurmans, M. C. Smid, B. B. Koenders, and B. H. ter Kuile (2011) in Microb. Drug Resist. 17:141-147. Resistance to amoxicillin was induced in E. coli by growth in the presence of stepwise increasing antibiotic concentrations. To investigate consequences of the aquisition of amoxicillin resistance the transcriptomic profile of sensitive and resistant cells was compared in the absence and presence of sub-inhibitory (0.25xMIC) amoxicillin concentrations was compared.