Project description:The purpose of this study was to measure DNA methylation and siRNA expression across the maize genome. The experimental data was derived from shotgun bisulfite sequencing, siRNA sequencing, and mRNA sequencing (Illumina, single end for all three)
Project description:Whole genome shotgun bisulfite sequencing, small RNA sequencing and transcriptome sequencing of wildtype Arabidopsis plants (Col-0), and met1, drm1 drm2 cmt3, and ros1 dml2 dml3 null mutants using the Illumina Genetic Analyzer. A comparison was performed with regions of the genome containing cytosine DNA methylation identified by methylcytosine immunoprecipitation and whole-genome oligonucleotide tiling microarrays, for wildtype Col-0. Understanding the epigenetic regulatory mechanisms that mediate control of transcription at multiple levels is critical to understanding how plants develop and respond to their environment. We combined next-generation sequencing by synthesis (SBS) technology with novel methods for direct sequencing of the entire cytosine methylome (methylC-seq), transcriptome (RNA-seq), and the small RNA component of the transcriptome (smRNA-seq) to create a set of highly integrated epigenome maps for Arabidopsis thaliana, in conjunction with a set of informative mutants defective in DNA methyltransferase and DNA demethylase activity. At single-base resolution we discovered extensive, previously undetected, DNA methylation, identified the context and level of methylation at each site, and found that local composition has effects upon DNA methylation state. Deep sequencing of the smRNAome exposed a direct relationship between the location and abundance of smRNAs and DNA methylation, perturbation of smRNA biogenesis upon loss of CpG DNA methylation, and a tendency for smRNAs to direct strand-specific DNA methylation in the region of RNA-DNA homology. Finally, strand-specific RNA-seq revealed changes in the transcript abundance of hundreds of genes upon alteration of the DNA methylation state, and enabled the identification of numerous previously unidentified genes regulated by DNA methylation. Keywords: Whole genome shotgun bisulfite sequencing, small RNA sequencing, transcriptome sequencing, methylcytosine immunoprecipitation, whole-genome oligonucleotide tiling microarrays Whole genome shotgun bisulfite sequencing, small RNA sequencing and transcriptome sequencing of wildtype Arabidopsis plants (Col-0), and met1, drm1 drm2 cmt3, and ros1 dml2 dml3 null mutants using the Illumina Genetic Analyzer. A comparison was performed with regions of the genome containing cytosine DNA methylation identified by methylcytosine immunoprecipitation and whole-genome oligonucleotide tiling microarrays, for wildtype Col-0.
Project description:Natural history museum specimens of historical honeybees have been successfully used to explore the genomic past of the honeybee, indicating fast and rapid changes between historical and modern specimens, possibly as a response to current challenges. In our study we explore a potential untapped archive from natural history collections - specimens of beeswax. We examine an Apis mellifera mellifera queen cell specimen from the 19th century. The intact and closed cell was analysed by X-ray Computed Tomography (CT) to reveal a perfectly preserved queen bee inside her cell. Subsequently, a micro-destructive approach was used to evaluate the possibility of protein extraction from the cell. Our results show that studies on specimens such as these provide valuable information about the past rearing of queens, their diet and development, which is relevant for understanding current honeybee behaviour. In addition we evaluate the feasibility of using historical beeswax as a biomolecular archive for ancient proteins to study honeybees.
Project description:Formalin induces inter- and intra-molecular crosslinks within exposed cells. This cross-linking can be exploited to characterise chromatin state as in the FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) and MNase (micrococcal nuclease) assays. Here, we optimised the FAIRE and MNase assays for application upon heavily-fixed tissues as is typically found in historical formalin-preserved museum specimens. We demonstrate these assays in formalin-fixed mouse specimens and compare the chromatin signatures to specimen-matched fresh tissues. We found that heavy formalin fixation modulates rather than eliminates signatures of differential chromatin accessibility and that these chromatin profiles are reproducible, tissue-specific and sex-specific in vertebrate specimens.
Project description:Epigenetics may help understanding the molecular mechanisms of atherosclerosis as genetic predisposition explains only part of cardiovascular disease risk. In particular, DNA methylation, a reversible and highly regulative DNA modification could contribute to disease onset and progression as it functions as effector for environmental impacts, including dietary and life-style, similarly to risk factors for cardiovascular diseases. We addressed this issue by performing whole-genome shotgun bisulfite sequencing and high-resolution DNAmethylation array analysis of healthy and diseased donor-matched atherosclerotic DNA methylomes. Sequencing of bisulfite converted DNA and array based analysis of atherosclerotic lesions and normal carotid tissue.
Project description:The draft genome of L. sativa (lettuce) cv. Tizian was sequenced in two Illumina sequencing runs, mate pair and shotgun. This entry contains the RAW sequencing data.