Project description:To identify additional miR-506 target genes and the mechanisms behind its tumor-suppressive effect, we performed global microarray analysis of mRNA expression in a miR-506-overexpressing AsPC-1 pancreatic cancer cell line and a negative control
Project description:SF-1 is a nuclear receptor transcription factor playing a key role in adrenogonadal development and in adrenocortical tumorigenesis when overexpressed. We studied gene expression profiles using Affymetrix microarrays in the H295R/TR SF-1 adrenocortical cancer cell line, where SF-1 expression can be increased in a doxycycline-dependent manner (Mol. Endocrinol. 21: 2968–2987, 2007)
Project description:Investigation of whole genome gene expression level changes in a Brucella melitensis delta prlr mutant compared to the wild type strain. The mutants analyzed in this study are further described in A. Mirabella, R-M Yanez, R.M. Delrue, S. Uzureau, M.S. Zygmunt, A. Cloeckaert, X. De Bolle, J.J. Letesson (2012). The two component system PrlS/PrlR of Brucella melitensis is required for persistence in mice and appears to respond to ionic strength. Microbiology A six chip study using total RNA recovered from three separate wild-type cultures of Brucella melitensis 16M and three separate cultures of a prlR mutant strain. Each chip measures the expression level of 3,198 genes from Brucella melitensis 16M with nineteen 60 mer probe pairs (PM/MM) per gene, with three-fold technical redundancy.
Project description:SF-1 is a nuclear receptor transcription factor playing a key role in adrenogonadal development and in adrenocortical tumorigenesis when overexpressed. We studied gene expression profiles using Affymetrix microarrays in the H295R/TR SF-1 adrenocortical cancer cell line, where SF-1 expression can be increased in a doxycycline-dependent manner (Mol. Endocrinol. 21: 2968–2987, 2007) H295R/TR SF-1 cells were cultured either in basal conditions or with doxycycline (Dox) added to the culture medium for 72 hours. RNA was extracted and hybridized to HG-U133 Plus 2.0 Affymetrix microarrays.