Project description:In this study, a total of 12,059 differential genes and 131 differential metabolites were obtained, and they were mainly concentrated in signal transduction and phenylpropane metabolic pathways. In the process of low temperature signal transduction, the hosta is mainly through the ion channels on the three cell membranes of COLD, CNGCs and CRLK to transmit Ca2+ inside and outside the cell to sense temperature changes, and stimulate SCRM to combine with DREB through the MAPK signal pathway and Ca2+ signal sensors such as CBL. Strengthen the low temperature resistance of the purple calyx hosta. The phenylpropane metabolic pathway and the flavonoid metabolism pathway are the main metabolic pathways for the hosta to resist low temperature stress. The hosta protects itself from low temperature damage by increasing the content of Genistein, Scopolentin and Scopolin. It is speculated that the hosta also adjusts Sinapyl alcohole and Coniferyl alcohol content ratio can change the morphological structure of cell wall and enhance low temperature resistance.
Project description:Strains 2-22 (S. agalactiae ST261 isolated from fish) and A909 (ST7) were grown in TH medium, at 30C and harvested at OD 0.3-0.4. Please note: ST261 and ST7 refer to MLST types commonly used in S.agalactiae as a first approach for phylogenomic relationships (MLST is based on the sequence of 7 genes).
Project description:Strains A909 (ST7 strain isolated from human) and CF01173 (ST7 strain isolated from fish) were grown in TH medium at 37C and harvested at OD 0.3-0.4. Please note: ST7 refers to MLST types commonly used in S.agalactiae as a first approach for phylogenomic relationships (MLST is based on the sequence of 7 genes).
Project description:Molecular phylogenomics investigates evolutionary relationships based on genomic data. However, despite genomic sequence conservation, changes in protein interactions can occur relatively rapidly and may cause strong functional diversification. To investigate such functional evolution, we here combine phylogenomics with interaction proteomics. We develop this concept by investigating the molecular evolution of the shelterin complex, which protects telomeres, across 16 vertebrate species from zebrafish to humans covering 450 million years of evolution. Our phylointeractomics screen discovers previously unknown telomere-associated proteins and reveals how homologous proteins undergo functional evolution. For instance, we show that TERF1 evolved as a telomere-binding protein in the common stem lineage of marsupial and placental mammals. Phylointeractomics is a versatile and scalable approach to investigate evolutionary changes in protein function and thus can provide experimental evidence for phylogenomic relationships.