Project description:The experiment investigates bovine gene expression in response to LPS in uninfected and Theileria annulata-infected cell cultures A subset of genes are identified which are activated in response to LPS stimulation with further modulation due to parasite infection.
Project description:Cinnamaldehyde is a natural antimicrobial and has been found to be effective against many foodborne pathogens including Escherichia coli O157:H7. Although its antimicrobial effects have been well investigated, limited information is available on its effects at the molecular level. Sublethal treatment at 200 mg/l cinnamaldehyde inhibited growth of E. coli O157:H7 at 37oC and for M-bM-^IM-$ 2 h caused cell elongation, but from 2 to 4 h growth resumed and cells reverted to normal length. To understand this transient behaviour, genome-wide transcriptional analysis of E. coli O157:H7 was performed at 2 and 4 h exposure to cinnamaldehyde. Drastically different gene expression profiles were obtained at 2 and 4 h. At 2 h exposure, cinnamaldehyde induced overexpression of many oxidative stress-related genes, reduced DNA replication, and synthesis of protein, O-antigen and fimbriae. At 4 h, many cinnamaldehyde-induced repressive effects on E. coli O157:H7 gene expressions were reversed and oxidatve stress genes were nolonger differentially expressed. Duplicate E. coli O157:H7 cultures with or without 200 mg/l cinnamaldehyde were incubated at 37M-BM-0C for M-bM-^IM-$ 4 h. Cinnamaldehyde-induced changes in gene expression profiles were compared at 2 and 4 h using Affymetrix Ginechip 2.0 microarrays.
Project description:Cinnamaldehyde is a natural antimicrobial and has been found to be effective against many foodborne pathogens including Escherichia coli O157:H7. Although its antimicrobial effects have been well investigated, limited information is available on its effects at the molecular level. Sublethal treatment at 200 mg/l cinnamaldehyde inhibited growth of E. coli O157:H7 at 37oC and for ≤ 2 h caused cell elongation, but from 2 to 4 h growth resumed and cells reverted to normal length. To understand this transient behaviour, genome-wide transcriptional analysis of E. coli O157:H7 was performed at 2 and 4 h exposure to cinnamaldehyde. Drastically different gene expression profiles were obtained at 2 and 4 h. At 2 h exposure, cinnamaldehyde induced overexpression of many oxidative stress-related genes, reduced DNA replication, and synthesis of protein, O-antigen and fimbriae. At 4 h, many cinnamaldehyde-induced repressive effects on E. coli O157:H7 gene expressions were reversed and oxidatve stress genes were nolonger differentially expressed.
Project description:The experiment investigates bovine gene expression in response to LPS in uninfected and Theileria annulata-infected cell cultures A subset of genes are identified which are activated in response to LPS stimulation with further modulation due to parasite infection. Six experimental conditions with three replicates per condition. Total RNA prepared from cell cultures. BL20 (uninfected bovine lymphosarcoma cell line), BL20 4 hours post-LPS stimulation, BL20 18 hours post-LPS, TBL (T. annulata infected bovine cell line), TBL 4 hours post-LPS, TBL 18 hours post-LPS. Each hydridisation represents bovine and parasite gene expression on a single channel and 2 technical replicates of each probeset are represented on the chip.
Project description:Natural product cinnamaldehyde has significant antifungal activities, and its inhibitory activity against Candida albicans has been reported. Up to now, there are few reports on the changes in the transcriptome of Candida albicans after cinnamaldehyde treatment. Here, RNA sequencing analysis of samples obtained from Candida albicans cells grown in the presence or absence of cinnamaldehyde was performed. A total of 123 differentially expressed genes were identified, of which 15 genes were up-regulated and 108 genes were down-regulated.
Project description:Intracellular parasites reprogram the host functions for their survival and reproduction. Conversely, the infected host attempts to defend the microbial insult. The extent and relevance of parasite-mediated host response in vivo remains poorly studied. We utilized Eimeria falciformis, an obligate intracellular parasite completing its entire life cycle in the mouse intestinal epithelium, to identify and validate the host determinants of the parasite infection. The most prominent mouse genes induced during the onset of asexual (24 hrs) and sexual (144 hrs) parasite cycle include IFNg-regulated factors, e.g., immunity-related GTPases IRGA6/B6/D/M2/M3, guanylate-binding proteins GBP2/3/5/8, chemokines CxCL9-11 and several enzymes of the kynurenine pathway including indoleamine 2,3-dioxygenase 1 (IDO1). These results indicated a multifarious innate defense (tryptophan catabolism, IRG, GBP, chemokines signaling) mounted by epithelial cells, and a consequential adaptive immune response (chemokines-cytokines signaling, lymphocyte recruitment). A notable increase in the inflammation- and immunity-associated transcripts correlated with the severity of infection and influx of B-cells, T-cells and macrophages to the parasitized tissue. Indeed, parasite growth was enhanced in the animals inhibited for CxCr3, a major chemokine receptor on immune cells. Interestingly, despite a prominent induction, the mouse IRGB6 failed to recognize and disrupt the parasitophorous vacuole in the parasite cultures, implying an immune evasion by E. falciformis. Likewise, the oocyst output was impaired in IFNg-R-/- and IDO1-/- mice, which signifies a subversion of IFNg-signaling by the parasite to promote its growth. In brief, the Eimeria-rodent model shows contrasting roles of IFNg-signaling for parasite development, identifies a retinue of potential host determinants, and epitomizes its efficacy for in vivo parasite-host interaction studies. Microarray experiments were performed as dual-color hybridizations on Agilent mouse whole genome catalog 44K arrays. To compensate for dye-specific effects, a dye-reversal color-swap was applied.
Project description:Insect hemocytes mediate important cellular immune responses including phagocytosis and encapsulation, and also secrete immune factors such as opsonins, melanization factors, and antimicrobial peptides. In Anopheles, they contribute to the defense against malaria parasite invasion during the early sporogonic cycle. We used microarrays to identify if and to what degree circulating hemocytes have altered global expression profiles after infection with the rodent malaria parasite, Plasmodium berghei
Project description:Insect hemocytes mediate important cellular immune responses including phagocytosis and encapsulation, and also secrete immune factors such as opsonins, melanization factors, and antimicrobial peptides. In Anopheles, they contribute to the defense against malaria parasite invasion during the early sporogonic cycle. We used microarrays to identify if and to what degree circulating hemocytes have altered global expression profiles after infection with the rodent malaria parasite, Plasmodium berghei Hemocytes were isolated 24-28h after infection using the infectious EGFP-CON P. berghei strain (experiment) or an invasion-deficient, Circumsporozoite- and TRAP-related protein (CTRP) knockout strain with the same genetic background as GFP-CON (CTRPko/GFP, control).