Project description:Proteogenomic analysis and genomic profiling, RNA-sequencing, and mass spectrometry-based analysis of High hyperdiploid childhood acute lymphoblastic leukemia.
Project description:Proteogenomic analysis and genomic profiling, RNA-sequencing, and mass spectrometry-based analysis of High hyperdiploid childhood acute lymphoblastic leukemia.
Project description:Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, and it has a 5-year survival rate of 85% for European children. But for subsets of patients who fail to respond to standard of care chemotherapeutics, treatment options are limited, and clinical prognosis is poor. To establish a platform and methodology to better characterize ALL subtypes and identify their pharmacologic vulnerabilities, we assembled a biobank of 49 readily available childhood ALL cell lines representing diverse immunotypes and genetic profiles. Using these cell lines, we performed comprehensive multi-omic analyses, providing proteomic, transcriptomic and pharmacoproteomic characterization of childhood ALL. We used this resource to characterize the functional impact of genetic fusions and cellular differentiation states on the proteome. Additionally, we identified a novel drug vulnerability in one of the ALL subtypes. Our results are provided as an interactive online data portal with navigable proteomics, transcriptomics, and drug sensitivity profiles.
Project description:In the present study, we found that circADD2 was down-regulated in ALL tissues and cell lines. Overexpression of circADD2 inhibited cell proliferation and promoted apoptosis both in vitro and in vivo. Additionally, we found that miR-149-5p may increase the expression of the target gene AKT2 through the mechanism of RNAa, and the level of AKT2 can be reversed by circADD2. Briefly, circADD2 could directly sponge miR-149-5p to downregulate AKT2 expression.
Project description:Background: Acute lymphocytic leukemia (ALL) is the most common malignant tumor in children. Increasing evidence suggests that circular RNAs (circRNAs) play critical regulatory roles in tumor biology. However, the expression patterns and roles of circRNAs in childhood acute lymphoblastic leukemia (ALL) remain largely unknown. Methods: circADD2 was selected by microarray assay and confirmed by qRT-PCR; in vitro effects of circADD2 were determined by CCK-8 and flow cytometry; while mice subcutaneous tumor model was designed for in vivo analysis. RNA immunoprecipitation and dual-luciferase assay were applied for mechanistic study. Protein levels were examined by Western blot assay. Results: circADD2 was down-regulated in ALL tissues and cell lines. Overexpression of circADD2 inhibited cell proliferation and promoted apoptosis both in vitro and in vivo. Briefly, circADD2 could directly sponge miR-149-5p, and the level of AKT2, a target gene of miR-149-5p, was downregulated by circADD2. Conclusion: circADD2, as a tumor suppressor in ALL, can sponge miR-149-5p, and may serve as a potential biomarker for the diagnosis or treatment of ALL.