Project description:Saccharina japonica is one of the most important marine economic crops worldwide. Blue light usually plays a significant role in the lives of Saccharina that may be beneficial to the culture system. Here we applied high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of Saccharina japonica with blue light and dark exposure respectively. Comparative analysis of gene expression was conducted to understand the underlying molecular mechanisms. RNA-seq analysis yielded 70,497 non-redundant unigenes. 25,924 unigenes of them had good comparability with known gene sequences in existing species. Based on the values of RPKM, 11,660 differentially expressed unigenes were detected in expression profiles between blue light and dark exposed samples. Our results provide clues to potential genes identification in the species and lay the foundation for future functional genomics study.
Project description:Acidiphilium sp. C61 cultures were cultivated in APPW+YE+Glucose medium with 0 µM or 10 µM PEA. RNA was extracted and library preparation was done using the NEBNext Ultra II directional RNA library prep kit for Illumina. Data was demultiplied by GATC sequencing company and adaptor was trimmed by Trimgalore. After trimming, data was processed quality control by sickle and mRNA was sorted by SortmeRNA. mRNA transcripts were mapped to the assembled genome of Acidiphilium sp. C61 and read counts table was produced by featurecounts. Differential gene expression analysis was done by edgeR package.
Project description:The complete genome (37 635 bp) mitochondrial DNA (mtDNA) of the Saccharina sp. ye-C5 was determined, which contains 38 protein-coding genes (PCG), three ribosomal RNA (rRNA) and 25 transfer RNA (tRNA) genes that are consistent in Saccharina genus. The phylogenetic tree that was established based on the mitochondrial genomes of brown algae, which indicated that Saccharina sp. ye-C5 and Saccharina longissima are the most closely related species.
Project description:The pod is the main edible part of Phaseolus vulgaris L. (common bean). The commercial use of the pods is mainly affected by their color. Consumers seem to prefer golden pods. However, planters suffer economic losses because of pod color instability. The aim of the present study was to identify the gene responsible for the golden pod trait in the common bean. ‘A18-1’ (a golden bean line) and ‘Renaya’ (a green bean line) were chosen as the experimental materials. Genetic analysis indicated that a single recessive gene, pv-ye, controls the golden pod trait. A candidate region of 4.24-Mb was mapped to chromosome A02 using bulked-segregant analysis coupled to whole genome sequencing. In this region, linkage analysis in an F2 population localized the pv-ye gene to an interval of 182.9-kb between the simple sequence repeat markers SSR77 and SSR93. This region comprised 16 genes in this region, comprising 12 annotated genes from the P. vulgaris database, and 4 functionally unknown genes. Combined with transcriptome sequencing, we identified Phvul.002G006200 as the potential candidate gene for pv-ye. Sequencing of Phvul.002G006200 identified a single nucleotide polymorphism (SNP) in pv-ye. This SNP is located in the coding region and is responsible for substituting a glutamic acid with an glutamine at position 416 of the pv-ye protein (E416Q). A pair of primers covering the SNP was designed and the fragment was sequenced to screen 316 F2 plants with the ‘A18-1’ phenotype, based on the different site. Our findings showed that the among the 316 mapped individuals, the SNP cosegregated with the ‘A18-1’ phenotype. The findings presented here could form the basis to reveal the mechanism of the golden pod trait in the common bean at the molecular level.
Project description:Saccharina japonica is one of the most important marine economic crops worldwide. Blue light usually plays a significant role in the lives of Saccharina that may be beneficial to the culture system. Here we applied high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of Saccharina japonica with blue light and dark exposure respectively. Comparative analysis of gene expression was conducted to understand the underlying molecular mechanisms. RNA-seq analysis yielded 70,497 non-redundant unigenes. 25,924 unigenes of them had good comparability with known gene sequences in existing species. Based on the values of RPKM, 11,660 differentially expressed unigenes were detected in expression profiles between blue light and dark exposed samples. Our results provide clues to potential genes identification in the species and lay the foundation for future functional genomics study. mRNA expression of Saccharina japonica with 2 different treatment (sample exposed to Dark condition, and sample exposed to blue light respectively) was determined by method of RNA-Seq