Project description:Heart failure (HF) is a leading cause of mortality and is associated with cardiac remodeling. Vulnerability to atrial fibrillation (AF) has been shown to be greater in the early stages of HF, whereas ventricular tachycardia/fibrillation develop during late stages. Here, we explore changes in gene expression that underlie the differential development of fibrosis and structural alterations that predispose to atrial and ventricular arrhythmias.
Project description:Primary human adipose stromal cells (hASCs) from rs4684847 CC risk allele carriers were cultured and induced to differentiate into adipocytes, and simultaneously transfected for 72h with non-targeting siRNA or siRNA targeting PRRX1 (n=10) or both PRRX1 and PPARG (subset of the subjects, n=4).
Project description:The right and left atria have different susceptibilities towards developing arrhythmias, with left atrial arrhythmias more commonly observed. To study potential underlying causes of this difference between the two upper chambers of the heart, four human left-right atrial pairs were subjected to whole-genome expression analyses via next generation sequencing of small RNAs, including microRNAs (miRNAs), and polyA enriched mRNAs. Using a paired sample design, significant differences in gene expression were found between the left and right atria in both the poly-A and small RNA fractions. Hsa-miR-143 was the most highly expressed miRNA in the atria as quantified by RNA-seq. Gene expression differences established during development are retained into adulthood including that of PITX2 and BMP10. In addition ten novel non-coding RNAs were found to be differentially expressed between the left and right atrias .
Project description:Loss of the Atrial Fibrillation-related gene, Zfhx3, Results in Atrial Dilation and Arrhythmias by Disruption of Genes Essential for Cardiovascular Homeostasis