Project description:We compare the overall gene expression of transgenic mice expressing the MYC oncogene (hiMYC mice) to induce tumorigenesis in the mouse prostate with mice having transgenic expression of the microRNA miR-32 in hiMYC background to determine whether increased expression of miR-32 influences growth or phenotype in prostate adenocarcinoma in vivo.
Project description:Transcriptional profiling of dorsolateral prostate of mice with prostate-specific transgenic expression of miR-32 compared with wild type mice.
Project description:Transcriptional profiling of ventral prostate of mice with prostate-specific transgenic expression of miR-32 compared with wild type mice.
Project description:miR-32 is an androgen receptor (AR)-regulated microRNA, expression of which is increased in castration-resistant prostate cancer (PC). We have previously shown that overexpression of miR-32 in the prostate of transgenic mice potentiates proliferation in prostate epithelium. Here, we set out to determine whether increased expression of miR-32 influences growth or phenotype in prostate adenocarcinoma in vivo. We studied transgenic mice expressing MYC oncogene (hiMYC mice) to induce tumorigenesis in the mouse prostate and discovered that transgenic overexpression of miR-32 resulted in increased tumor burden as well as a more aggressive tumor phenotype in this model. Elevated expression of miR-32 increased proliferation as assessed by Ki-67 immunohistochemistry, increased nuclear density, and higher mitotic index in the tumors. By gene expression analysis of the tumorous prostate tissue, we confirmed earlier findings that miR-32 expression regulates prostate secretome by modulating expression levels of several PC-related target genes such as Spink1, Spink5, and Msmb. Further, we identified Pdk4 as a tumor-associated miR-32 target in the mouse prostate. Expression analysis of PDK4 in human PC reveals an inverse correlation with miR-32 expression and Gleason score, a decrease in castration-resistant and metastatic tumors compared to untreated primary PC, and an association of low PDK4 expression with a shorter recurrence-free survival of patients. Although decreased PDK4 expression induces the higher metabolic activity of PC cells, induced expression of PDK4 reduces both mitotic respiration and glycolysis rates as well as inhibits cell growth. In conclusion, we show that miR-32 promotes MYC-induced prostate adenocarcinoma and identifies PDK4 as a PC-relevant metabolic target of miR-32-3p.
Project description:Here, an overexpressed miR-6498-5p transgenic silkworm line was constructed. Importantly, the survival rates and median lethal doses of the transgenic line were clearly higher after infection with N. bombycis.
Project description:We intend to screen altered genes after overexpression of miR-196a in HD transgenic mice. Two transgenic mouse lines were used in this study, including HD transgenic mice and HD transgenic mice overexpressing miR-196a. The mice were all at approximate 12 months of age. At this point, HD transgenic mice showed severve motor dysfunctions, whereas HD transgenic mice overexpressing miR-196a displayed mild motor dysfunctions.
Project description:Transcriptional profiling of mouse livers comparing control mice with miR-155 transgenic mice that overexpression of miR-155 in the liver
Project description:We intend to screen altered genes after overexpression of miR-196a in HD transgenic mice. Two transgenic mouse lines were used in this study, including HD transgenic mice and HD transgenic mice overexpressing miR-196a. The mice were all at approximate 12 months of age. At this point, HD transgenic mice showed severve motor dysfunctions, whereas HD transgenic mice overexpressing miR-196a displayed mild motor dysfunctions. We used the striatum tissues from 2 HD transgenic mice and 3 HD transgenic mice overexpressing miR-196a. The mice were all at approximate 12 months of age. Two technique repeats were performed for each sample.