Project description:The erythroid Krüppel-like factor EKLF/KLF1 is a hematopoietic transcription factor binding to CACCC DNA motif and participating in the regulation of erythroid differentiation. With combined use of microarray-based gene expression profiling and promoter-based ChIP-chip assay of E14.5 fetal liver cells from wild type (WT) and EKLF-knockout (Eklf-/-) mouse embryos, we have identified the pathways and direct target genes activated or repressed by EKLF. This genome-wide study together with molecular/ cellular analysis of mouse erythroleukemic cells (MEL) indicate that among the downstream direct target genes of EKLF is Tal1/Scl. Tal1/Scl encodes another DNA-binding hematopoietic transcription factor TAL1/SCL known to be an Eklf activator and essential for definitive erythroid differentiation. Further identification of the authentic Tall gene promoter in combination with in vivo genomic footprinting approach and DNA reporter assay demonstrate that EKLF activates Tall gene through binding to a specific CACCC motif located in its promoter. These data establish the existence of a previously unknow positive regulatory feedback loop between two DNA-binding hematopoietic transcription factors that sustains the mammalian erythropoiesis.
Project description:The aim of this study was to analyze the transcriptome of TER119+ fetal liver cells in the absence of the transcription factor KLF3 at murine embryonic day E14.5 Three wildtype (WT; Klf3+/+) and three knockout (KO; Klf3-/-) samples
Project description:The aim of this study was to analyze the transcriptome of TER119+ fetal liver cells in the absence of the transcription factor KLF3 at murine embryonic day E14.5
Project description:We used microarrays to identify genes differentially expressed between mouse RUNX2 -/- and wt embryonic humeri at stage E14.5 Keywords: wildtype versus knockout comparison
Project description:The aim of this experiment was to investigate the role of KLF3 in regulating gene expression at different stages throughout the erythroid maturation process. Affymetrix microarrays were performed on fetal liver cells (both TER119- progenitor cells and TER119+ erythroblast cells) from E14.5 wildtype and Klf3 KO mice. Four wildtype TER119- replicates, four Klf3 KO TER119- replicates, four wildtype TER119+ replicates, three Klf3 KO TER119+ replicates. All are from E14.5 fetal liver.
Project description:Total RNA (15 ug) isolated from three each of wild type and Cited2-null E14.5 fetal livers using Qiagen RNeasy kit (Valencia, CA) was used to prepare biotinylated cRNA according to the protocol described in Affymetrix Expression Analysis Technical Manual. We hybridized a total of six GeneChip Mouse Genome 430A 2.0 arrays (Affymetrix), three for controls and three for experimental samples.
Project description:To determine genes in FL HSCs that are sensitive to Notch signagling, E14.5 FL cells were cultured on DL1( to stimulate Notch signaling). Cells were cultured in the presence of DMSO (vehicle control) or gamma secretase inhibitor (1uM) for 4 hrs or 10hrs. Gamma secretase inhibitor was used to inhibit Notch signaling. SLAM-LSKs were sorted and used for RNA preparation.
Project description:The aim of this experiment was to investigate the role of KLF3 in regulating gene expression at different stages throughout the erythroid maturation process. Affymetrix microarrays were performed on fetal liver cells (both TER119- progenitor cells and TER119+ erythroblast cells) from E14.5 wildtype and Klf3 KO mice.