Project description:FabR ChIP-chip on Salmonella enterica subsp. enterica serovar Typhimurium SL1344 using anti-Myc antibody against strain with chromosomally 9Myc-tagged FabR (IP samples) and wildtype strain (mock IP samples)
Project description:Single-molecule read technologies allow for detection of epigenomic base modifications during routine sequencing by analysis of kinetic data during the reaction, including the duration between base incorporations at the elongation site (the "inter-pulse duration.") Methylome data associated with a closed de novo bacterial genome of Salmonella enterica subsp. enterica serovar Javiana str. CFSAN001992 was produced and submitted to the Gene Expression Omnibus.
Project description:Single-molecule read technologies allow for detection of epigenomic base modifications during routine sequencing by analysis of kinetic data during the reaction, including the duration between base incorporations at the elongation site (the "inter-pulse duration.") Methylome data associated with a closed de novo bacterial genome of Salmonella enterica subsp. enterica serovar Javiana str. CFSAN001992 was produced and submitted to the Gene Expression Omnibus. Single-sample sequencing and base modification detection of cultured isolate of a foodborne pathogen.
Project description:Comparative genomic analysis of the most important S. enterica sspI clinical isolates and respective strains from the SARB collection Keywords: other
Project description:Investigation of whole genome gene expression level changes in a Salmonella enterica serovar Typhimurium 14028 delta GidA mutant The mutant described in this study is further analyzed in Shippy, D. C., N. M. Eakley, P. N. Bochsler, and A. A. Fadl. 2011. Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene. Microb Pathog.
Project description:Salmonella enterica serovar Typhimurium (S. Typhimurium) definitive phage type 104 (DT104) has caused significant morbidity and mortality in humans and animals for almost three decades. We have completed the full DNA sequence of one DT104 strain, NCTC13348 and show that the main differences between the genome of this isolate and the previously sequenced S. Typhimurium LT2 lie in integrated prophage elements and the Salmonella Genomic Island 1 encoding antibiotic resistance genes. Thirteen isolates of S. Typhimurium DT104 with different pulsed field gel electrophoresis (PFGE) profiles were analyzed by multi locus sequence typing (MLST), plasmid profiling, hybridization to a Pan-Salmonella DNA microarray and prophage-based multiplex PCR. All the isolates belonged to a single MLST type ST19. Microarray data demonstrated that the 13 DT104 isolates were remarkably conserved in gene content. The PFGE band-size differences in these isolates could be explained to a great extent by changes in prophage and plasmid content. Thus, here the nature of variation in different S. Typhimurium DT104 isolates is further defined at the genome level illustrating how this phage type is evolving over time.
Project description:Investigation of whole genome gene expression level changes in a Salmonella enterica serovar Typhimurium UK1 delta-iacP mutant, compared to the wild-type strain. IacP is resoponsible for the secretion of virulence effector proteins via the type III secretion system, thereby contributing the virulence of S. Typhimurium. The mutants analyzed in this study are further described in Kim et al. 2011. Role of Salmonella Pathogenicity Island 1 Protein IacP in Salmonella enterica Serovar Typhimurium Pathogenesis. Infection and Immunity 79(4):1440-1450 (PMID 21263021).
Project description:Investigation of whole genome gene expression level changes in Salmonella enterica serova Enteritidis and Typhimurium under chlorine treatment
Project description:We performed affinity purification coupled to quantitative mass spectrometry (AP-qMS) for proteins belonging to retrons of Salmonella enterica. We quantified the proteome of rcaT point mutants in Salmonella enterica. We quantified the proteome of phage P1vir in E. coli.
Project description:Comparative genomic analysis of a temporally and locally diverse set of S. enterica ssp I sv Paratyphi A isolates Keywords: ordered