Project description:Metaproteomes of individual Trichodesmium colonies collected from a single location in the Carribbean sea (65.22W, 17.02N) at 17:00 local time. Some colonies were associated with auto-fluorescent mineral particles. Their proteomes were analyzed individually to investigate the effect of the minerals on colony physiology.
Project description:Evaluation of short-read-only, long-read-only, and hybrid assembly approaches on metagenomic samples demonstrating how they affect gene and protein prediction which is relevant for downstream functional analyses. For a human gut microbiome sample, we use complementary metatranscriptomic, and metaproteomic data to evaluate the metagenomic-based protein predictions.
Project description:The filamentous diazotrophic cyanobacteria Trichodesmium spp. supply fixed nitrogen (N) to the N-depleted oligotrophic oceans where their growth is often limited by the low availability of phosphorus(P) and/or iron. Previous studies have mostly been focused on the effects of ocean acidification on Trichodesmium under nutrient sufficient or iron-limited conditions. Only a few studies have examined the impacts of ocean acidification on Trichodesmium grown at low P concentrations using non-steady-state batch cultures. Here we cultured Trichodesmium using P-limited continuous cultures (chemostat) to mimic steady-state oceanic low P condition, and used comparative NGS-derived Trichodesmium transcriptome profiling (RNA-seq) analysis to find differentially expressed genes and cellular pathways in response to acidification.
Project description:Our paper presents the results of a study in which we used whole genome bisulfite sequencing (WGBS), RNA-Seq (i.e. transcriptomics), high-CO2 physiology experiments, and spatiotemporally separated samples isolated in situ (i.e. directly from the ocean) to examine the metabolic potential of genome-wide cytosine (5mC) methylation (i.e. epigenomics), its potential impacts to transcriptional dynamics under both present-day and future ocean acidification conditions, and its biogeographic conservation in the globally-significant, biogeochemically-critical marine cyanobacterium Trichodesmium.
Project description:Our paper presents the results of a study in which we used whole genome bisulfite sequencing (WGBS), RNA-Seq (i.e. transcriptomics), high-CO2 physiology experiments, and spatiotemporally separated samples isolated in situ (i.e. directly from the ocean) to examine the metabolic potential of genome-wide cytosine (5mC) methylation (i.e. epigenomics), its potential impacts to transcriptional dynamics under both present-day and future ocean acidification conditions, and its biogeographic conservation in the globally-significant, biogeochemically-critical marine cyanobacterium Trichodesmium.