Project description:Although single cell RNA sequencing studies have begun providing compendia of cell expression profiles, it has proven more difficult to systematically identify and localize all molecular cell types in individual organs to create a full molecular cell atlas. Here we describe droplet- and plate-based single cell RNA sequencing applied to ~75,000 human lung and blood cells, combined with a multi-pronged cell annotation approach, which have allowed us to define the gene expression profiles and anatomical locations of 58 cell populations in the human lung, including 41 of 45 previously known cell types or subtypes and 14 new ones. This comprehensive molecular atlas elucidates the biochemical functions of lung cell types and the cell-selective transcription factors and optimal markers for making and monitoring them; defines the cell targets of circulating hormones and predicts local signaling interactions including sources and targets of chemokines in immune cell trafficking and expression changes on lung homing; and identifies the cell types directly affected by lung disease genes and respiratory viruses. Comparison to mouse identified 17 molecular types that appear to have been gained or lost during lung evolution and others whose expression profiles have been substantially altered, revealing extensive plasticity of cell types and cell-type-specific gene expression during organ evolution including expression switches between cell types. This atlas provides the molecular foundation for investigating how lung cell identities, functions, and interactions are achieved in development and tissue engineering and altered in disease and evolution.
Project description:Single-cell mRNA sequencing (mRNA-seq) technologies are reshaping the current cell-type classification system. In previous studies, we built a comprehensive mouse cell atlas to catalog all cell types by collecting scRNA-seq data in the fetal and adult stages. Howerver, systematically study for organism-level dynamic changes of cellular states across mouse life span are still lacking. Here, We made an updated version of mouse cell atlas (MCA) by adding scRNA-seq data covering 14 major mouse organs during different mouse development period. We revealed aging related regulatory networks and pathways that have not been well characterized previously. We found that the expressions of immune-related genes, such as antigen-presenting genes and immunoglobulin genes, appeared in non-immune cell types in aging process. We also focused on the expression of lung epithelial immunoglobulin genes and revealed their related transcriptional regulation mechanisms. The updated MCA resource provides a valuable resource for studying mammalian development, maturation and aging.
Project description:Multiple distinct cell types of the human lung and airways have been defined by single cell RNA sequencing (scRNAseq). Here we present a multi-omics spatial lung atlas to define novel cell types which we map back into the macro- and micro-anatomical tissue context to define functional tissue microenvironments. Firstly, we have generated single cell and nuclei RNA sequencing, VDJ-sequencing and Visium Spatial Transcriptomics data sets from 5 different locations of the human lung and airways. Secondly, we define additional cell types/states, as well as spatially map novel and known human airway cell types, such as adult lung chondrocytes, submucosal gland (SMG) duct cells, distinct pericyte and smooth muscle subtypes, immune-recruiting fibroblasts, peribronchial and perichondrial fibroblasts, peripheral nerve associated fibroblasts and Schwann cells. Finally, we define a survival niche for IgA-secreting plasma cells at the SMG, comprising the newly defined epithelial SMG-Duct cells, and B and T lineage immune cells. Using our transcriptomic data for cell-cell interaction analysis, we propose a signalling circuit that establishes and supports this niche. Overall, we provide a transcriptional and spatial lung atlas with multiple novel cell types that allows for the study of specific tissue microenvironments such as the newly defined gland-associated lymphoid niche (GALN).
Project description:Trisomy 21 (T21), resulting in Down Syndrome (DS), is the most prevalent chromosomal abnormality worldwide. While pulmonary disease is a major cause of morbidity and mortality in DS, the ontogeny of pulmonary complications remains poorly understood. We recently demonstrated that T21 lung anomalies, including airway branching and vascular lymphatic abnormalities, are initiated in utero. Here, we aimed to describe molecular changes at the single cell level in prenatal T21 lungs. Our results demonstrate differences in the proportion of cell populations and detail changes in gene expression at the time of initiation of histopathological abnormalities. Notably, we identify shifts in the distribution of alveolar epithelial progenitors, widespread induction of key extracellular matrix molecules in mesenchymal cells and hyper-activation of IFN signaling in endothelial cells. This single cell atlas of T21 lungs greatly expands our understanding of antecedents to pulmonary complications and should facilitate efforts to mitigate respiratory disease in DS.