Project description:97 triple negative tumors were selected from the fresh-frozen tissue bank of the Netherlands Cancer Institute and gene expression profiles were generated using 35K oligonucleotide microarrays. Human breast carcinomas were snap frozen in liquid nitrogen within one hour after surgery and stored in the fresh-frozen tissue bank of the Netherlands Cancer Institute. RNA from a pool of more than 100 unselected fresh frozen breast carcinomas were isolated and pooled to form the reference to which each individual breast carcinoma is hybridized.
Project description:Green hydra (Hydra viridissima) harbors endosymbiotic Chlorella and have established a mutual relation. To identify the host hydra genes involved in the specific symbiotic relationship, transcriptomes of intact H. viridissima colonized with symbiotic Chlorella strain A99, aposymbiotic H.viridissima and H. viridissima artificially infected with other symbiotic Chlorella were compared by microarray analysis. The results indicated that genes involved in nutrition supply to Chlorella were upregulated in the symbiotic hydra. In addition, it was induced by supply of photosynthates from the symbiont to the host, suggesting cooperative metabolic interaction between the host and the symbiotic algae.
Project description:Donor pancreata were obtained from the Beta Cell Bank of the JDRF Centre for Beta Cell Therapy in Diabetes (Brussels, Belgium), from Pancreatic Islet Processing (ECIT center) of Diabetes Research Institute at the IRCCS San Raffaele Scientific Institute (Milan, Italy) and from the DRWF Human Islet Isolation Facility (Oxford, England). Full written consent for use of donor material for research was obtained according to Belgian, Italian and English laws. This project was approved by the Medical Ethical Committee of all institutions. Cells were cultured in 3D suspension culture for four days in Advanced RPMI supplemented with 5% FBS.
Project description:Donor pancreata were obtained from the Beta Cell Bank of the JDRF Centre for Beta Cell Therapy in Diabetes (Brussels, Belgium), from Pancreatic Islet Processing (ECIT center) of Diabetes Research Institute at the IRCCS San Raffaele Scientific Institute (Milan, Italy) and from the DRWF Human Islet Isolation Facility (Oxford, England). Full written consent for use of donor material for research was obtained according to Belgian, Italian and English laws. This project was approved by the Medical Ethical Committee of all institutions. Cells were cultured in 3D suspension culture for four days in Advanced RPMI supplemented with 5% FBS.
Project description:Rhizobia are soil bacteria that can associate with some legumes and participate in symbiotic nitrogen fixation. Bacterial CspA family members are small, single stranded nucleic acid binding proteins. Differentiation of rhizobial bacteria from a free-living to symbiotic state within legume root nodules follows a massive re-programming of bacterial gene expression. Here, the role of Sinorhizobium meliloti CspA family members in symbiotic development with Medicago sativa (alfalfa) was investigated. We defined expression patterns of CspA family members, identified CspA interacting RNAs, and investigated phenotypes and transcriptional defects associated with cspA deletion strains. We propose that these proteins affect rhizobial physiology through their global control of the cellular RNA secondary structure strength environment and through specific modulation of small non-coding RNA (sRNA) structures involved in cis-regulation of stress responsive sigma factor expression. This work describes an RNA structure mediated mechanism important for bacterial stress adaptation and symbiotic development within a plant host.
Project description:Rhizobia are soil bacteria that can associate with some legumes and participate in symbiotic nitrogen fixation. Bacterial CspA family members are small, single stranded nucleic acid binding proteins. Differentiation of rhizobial bacteria from a free-living to symbiotic state within legume root nodules follows a massive re-programming of bacterial gene expression. Here, the role of Sinorhizobium meliloti CspA family members in symbiotic development with Medicago sativa (alfalfa) was investigated. We defined expression patterns of CspA family members, identified CspA interacting RNAs, and investigated phenotypes and transcriptional defects associated with cspA deletion strains. We propose that these proteins affect rhizobial physiology through their global control of the cellular RNA secondary structure strength environment and through specific modulation of small non-coding RNA (sRNA) structures involved in cis-regulation of stress responsive sigma factor expression. This work describes an RNA structure mediated mechanism important for bacterial stress adaptation and symbiotic development within a plant host.
Project description:Investigation of whole genome gene expression level changes in a Sinorhizobium meliloti 1021 rpoH1 rpoH2 double mutant, compared to the wild-type strain. The mutations engineered into this strain render it deficient in symbiotic nitrogen fixation. The mutants analyzed in this study are further described in Mitsui, H, T. Sato, Y. Sato, and K. Minamisawa. 2004. Sinorhizobium meliloti RpoH1 is required for effective nitrogen-fixing symbiosis with alfalfa. Mol Gen Genomics 271:416-425.
Project description:Coevolutionary change requires reciprocal selection between interacting species, i.e., that the partner genotypes that are favored in one species depend on the genetic composition of the interacting species. Coevolutionary genetic variation is manifested as genotype ´ genotype (G ´ G) interactions for fitness from interspecific interactions. Although quantitative genetic approaches have revealed abundant evidence for G ´ G interactions in symbioses, the molecular basis of this variation remains unclear. Here we study the molecular basis of G ´ G interactions in a model legume-rhizobium mutualism using gene expression microarrays. We find that, like quantitative traits such as fitness, variation in the symbiotic transcriptome may be partitioned into additive and interactive genetic components. Our results suggest that plant genetic variation is the largest influence on nodule gene expression, and that plant genotype and the plant genotype ´ rhizobium genotype interaction determine global shifts in rhizobium gene expression that in turn feedback to influence plant fitness benefits. Moreover, the transcriptomic variation we uncover implicates regulatory changes in both species as drivers of symbiotic gene expression variation. Our study is the first to partition genetic variation in a symbiotic transcriptome, and illuminates potential molecular routes of coevolutionary change. We assayed gene expression using three biological replicates for each plant genotype × rhizobium genotype combination (4 combinations) for a total of 12 chips. We compared gene expression in each of four combinations of Medicago truncatula families and Sinorhizobium meliloti strains using Affymetrix Medicago GeneChips to study how the entire transcriptome and individual genes responded to differences between plant families, between rhizobium strains, and due to the plant family × rhizobium strain (G × G) interaction.
Project description:The Ivy Glioblastoma Atlas Project (Ivy GAP) is a detailed anatomically based transcriptomic atlas of human glioblastoma tumors. As collaborators, the Ivy Foundation funded the Allen Institute and the Swedish Neuroscience Institute to design and create the atlas. The Paul G. Allen Family Foundation also supported the project. This resource consists of a viewer interface that resolves the manually- and machine-annotated histologic images (H&E and RNA in situ hybridization) at 0.5 µm/pixel, a transcriptome browser to view and mine the anatomically-based RNA-Seq samples, an application programming interface, help documentation that describes the methods and how to use the resource, as well as SNP array data and the supporting longitudinal clinical information and MRI time course data. The resource is made available to the public without charge as part of the Ivy GAP (http://glioblastoma.alleninstitute.org/) via the Allen Institute data portal (http://www.brain-map.org), the Ivy GAP Clinical and Genomic Database (http://ivygap.org/) via the Swedish Neuroscience Institute (http://www.swedish.org/services/neuroscience-institute), and The Cancer Imaging Archive (https://wiki.cancerimagingarchive.net/display/Public/Ivy+GAP). The Ivy GAP processed data at GEO includes normalized RNA-Seq FPKM files used for analysis in "An anatomic transcriptional atlas of glioblastoma,” which is under review. Other processed data files as well as sample and donor meta-data and QC metrics are available at http://glioblastoma.alleninstitute.org/static/download.html. The raw RNA-Seq and SNP array data will be submitted to dbGaP.