Project description:In this study, we compared the expression profiles of circulating miRNAs in blood samples from controls and patients with heart ailment. Subject with no past history of heart failure/disease are considered as controls. The patients were classified according to the percentage of left ventricular ejection fraction. Patients were grouped as heart failure with reduced (hfREF) and preserved (hfPEF) left ventricular ejection fraction. Employing miRNA microarray, we identified 'signature miRNAs' in peripheral blood samples that distinguished Heart failure from the non-heart failure controls, as well as those of hfREF and hfPEF groups.
Project description:Characterization of plasma metabolomic profile of 15 patients with advanced heart failure referred for heart transplantation (8 patients with chronic chagasic cardiomyopathy and 7 with idiopathic dilated cardiomyopathy) and 12 heart donor individuals using gas chromatography/quadrupole time-of-flight mass spectrometry.
Project description:In current clinical practice care of diseased patients is often restricted to separated disciplines. However, such an organ-centered approach is not always suitable. For example, cognitive dysfunction is a severe burden in heart failure patients. Moreover, these patients have an increased risk for age-associated dementias. The underlying molecular mechanisms are presently unknown and thus corresponding therapeutic strategies to improve cognition in heart failure patients are missing. Using mice as model organisms we show that heart failure leads to specific changes in hippocampal gene-expression, a brain region intimately linked to cognition. These changes reflect increased cellular stress pathways which eventually lead to loss of neuronal euchromatin and reduced expression of a hippocampal gene cluster essential for cognition. Consequently, mice suffering from heart failure exhibit impaired memory function. These pathological changes are ameliorated via the administration of a drug that promotes neuronal euchromatin formation. Our study provides first insight to the molecular processes by which heart failure contributes to neuronal dysfunction and point to novel therapeutic avenues to treat cognitive defects in heart failure patients.
Project description:In current clinical practice care of diseased patients is often restricted to separated disciplines. However, such an organ-centered approach is not always suitable. For example, cognitive dysfunction is a severe burden in heart failure patients. Moreover, these patients have an increased risk for age-associated dementias. The underlying molecular mechanisms are presently unknown and thus corresponding therapeutic strategies to improve cognition in heart failure patients are missing. Using mice as model organisms we show that heart failure leads to specific changes in hippocampal gene-expression, a brain region intimately linked to cognition. These changes reflect increased cellular stress pathways which eventually lead to loss of neuronal euchromatin and reduced expression of a hippocampal gene cluster essential for cognition. Consequently, mice suffering from heart failure exhibit impaired memory function. These pathological changes are ameliorated via the administration of a drug that promotes neuronal euchromatin formation. Our study provides first insight to the molecular processes by which heart failure contributes to neuronal dysfunction and point to novel therapeutic avenues to treat cognitive defects in heart failure patients.
Project description:In current clinical practice care of diseased patients is often restricted to separated disciplines. However, such an organ-centered approach is not always suitable. For example, cognitive dysfunction is a severe burden in heart failure patients. Moreover, these patients have an increased risk for age-associated dementias. The underlying molecular mechanisms are presently unknown and thus corresponding therapeutic strategies to improve cognition in heart failure patients are missing. Using mice as model organisms we show that heart failure leads to specific changes in hippocampal gene-expression, a brain region intimately linked to cognition. These changes reflect increased cellular stress pathways which eventually lead to loss of neuronal euchromatin and reduced expression of a hippocampal gene cluster essential for cognition. Consequently, mice suffering from heart failure exhibit impaired memory function. These pathological changes are ameliorated via the administration of a drug that promotes neuronal euchromatin formation. Our study provides first insight to the molecular processes by which heart failure contributes to neuronal dysfunction and point to novel therapeutic avenues to treat cognitive defects in heart failure patients.
Project description:MicroRNA profiling of myocardium of ovine comparing normal (Control), paced-induced heart failure (HF) and heart failure recovery (HF-R) after discontinuation of pacing.
Project description:Depletion of cardiac ATP content is a characteristic feature of heart failure in patients and experimental animal models. To analyze the impact of insufficient ATP supply on heart function we inhibited cellular respiration by disulfide poisoning with the mild thiol-blocking agent, cystamine. We chose 4 month-old apolipoprotein E (apoE)-deficient mice, which are highly vulnerable to increased oxygen and ATP demands. After 4 weeks of cystamine treatment (300 mg/kg in drinking water), echocardiography and histology analyses demonstrated that apoE-deficient mice had developed heart failure with cardiac dilation. The microarray gene expression study of heart tissue from cystamine-treated apoE-deficient mice relative to untreated mice confirmed the development of heart failure showing up-regulation heart failure-specific genes by mild thiol-blocking with cystamine. Microarray gene expression profiling was performed with heart tissue isolated from three study groups: (i) cystamine-treated 5 month-old apolipoprotein- (apoE)- deficient mice with symptoms of heart failure, (ii) untreated 5 month-old apoE- deficient mice, and (iii) age-matched, untreated, non-transgenic B6 control mice.