Project description:Molecular analysis of the effect left ventricular assist device (LVAD) support has on congestive heart failure patients. Keywords = Congestive heart failure, left ventricular assist device, eNOS, gene, dimethylarginine dimethylaminohydrolase Keywords: other
Project description:In this study, we compared the expression profiles of circulating miRNAs in blood samples from controls and patients with heart ailment. Subject with no past history of heart failure/disease are considered as controls. The patients were classified according to the percentage of left ventricular ejection fraction. Patients were grouped as heart failure with reduced (hfREF) and preserved (hfPEF) left ventricular ejection fraction. Employing miRNA microarray, we identified 'signature miRNAs' in peripheral blood samples that distinguished Heart failure from the non-heart failure controls, as well as those of hfREF and hfPEF groups.
Project description:Human left ventricular free wall heart tissue was obtained from end-stage heart failure patients at the moment of heart transplantation
Project description:Human left ventricular free wall heart tissue was obtained from end-stage heart failure patients at the moment of heart transplantation Left ventricular free wall samples were also obtained from healthy hearts of organ donors, which were not used for transplantation due to size mismatch with available recipients.
Project description:This research aimed to identify protein biomarkers of right ventricular dysfunction in patients with advanced heart failure with reduced ejection fraction (HFrEF). Samples of myocardium from both, right and left ventricles (RV, LV) were obtained from 10 HFrEF patients with right ventricular dysfunction (RVD), 10 HFrEF patients without RVD (noRVD) undergoing heart transplantation, and 10 non-failing unused donor hearts (Control). Tissue samples were homogenized and extracted using mild Triton X-100 detergent and processed by SP3 extraction to remove the detergent prior the analysis, (LFQ) proteomic analysis identified a total of 4 032 proteins in the left ventricle and 3 788 proteins in the right ventricle.
Project description:Heart failure is associated with high morbidity and mortality and its incidence increases worldwide. MicroRNAs (miRNAs) are potential markers and targets for diagnostic and therapeutic applications, respectively. We determined myocardial and circulating miRNA abundance and its changes in patients with stable and end-stage heart failure before and at different time points after mechanical unloading by a left ventricular assist device (LVAD) by small-RNA-sequencing. MiRNA changes in failing heart tissues partially resembled that of fetal myocardium. Consistent with prototypical miRNA–target-mRNA interactions, target mRNA levels were negatively correlated to changes in abundance for highly expressed miRNAs in heart failure and fetal hearts. The circulating small RNA profile was dominated by miRNAs, and fragments of tRNAs and small cytoplasmic RNAs. Heart- and muscle-specific circulating miRNAs (myomirs) increased up to 140-fold in advanced heart failure, which coincided with a similar increase in cardiac troponin I protein, the established marker for heart injury. These extracellular changes nearly completely reversed 3 months following initiation of LVAD support. In stable heart failure, circulating miRNAs showed less than 5-fold differences compared to normal, and myomir and cardiac troponin I levels were only captured near the detection limit. These findings provide the underpinning for miRNA-based therapies and emphasize the usefulness of circulating miRNAs as biomarkers for heart injury performing similar to established diagnostic protein biomarkers. Total RNA isolated from human left ventricular myocardium of failing hearts due to dilated or ischemic cardiomyopathy before and after mechanical unloading by a left ventricular assist device (LVAD), and fetal myocardium compared to non-failing postnatal myocardium.
Project description:Heart failure is associated with high morbidity and mortality and its incidence increases worldwide. MicroRNAs (miRNAs) are potential markers and targets for diagnostic and therapeutic applications, respectively. We determined myocardial and circulating miRNA abundance and its changes in patients with stable and end-stage heart failure before and at different time points after mechanical unloading by a left ventricular assist device (LVAD) by small-RNA-sequencing. MiRNA changes in failing heart tissues partially resembled that of fetal myocardium. Consistent with prototypical miRNAM-bM-^@M-^Starget-mRNA interactions, target mRNA levels were negatively correlated to changes in abundance for highly expressed miRNAs in heart failure and fetal hearts. The circulating small RNA profile was dominated by miRNAs, and fragments of tRNAs and small cytoplasmic RNAs. Heart- and muscle-specific circulating miRNAs (myomirs) increased up to 140-fold in advanced heart failure, which coincided with a similar increase in cardiac troponin I protein, the established marker for heart injury. These extracellular changes nearly completely reversed 3 months following initiation of LVAD support. In stable heart failure, circulating miRNAs showed less than 5-fold differences compared to normal, and myomir and cardiac troponin I levels were only captured near the detection limit. These findings provide the underpinning for miRNA-based therapies and emphasize the usefulness of circulating miRNAs as biomarkers for heart injury performing similar to established diagnostic protein biomarkers. Total RNA isolated from human left ventricular myocardium of failing hearts due to dilated or ischemic cardiomyopathy before and after mechanical unloading by a left ventricular assist device, and fetal myocardium compared to non-failing postnatal myocardium was subjected to multiplexed small RNA-sequencing on the Illumina platform. mRNA gene expression data using Illumina HumanHT-12v4 beadarrays for a subset of the myocardial samples is available (GSE52601).