Project description:The gut microbiota influences host epigenetics by fermenting dietary fiber into butyrate. Although butyrate could promote histone acetylation by inhibiting histone deacetylases, it may also undergo oxidation to acetyl-CoA, a necessary cofactor for histone acetyltransferases. Here, we find that epithelial cells from germ-free mice harbor a loss of histone H4 acetylation across the genome except at promoter regions. Using stable isotope tracing in vivo with 13C-labeled fiber, we demonstrate that the microbiota supplies carbon for histone acetylation. Subsequent metabolomic profiling revealed hundreds of labeled molecules and supported a microbial contribution to host fatty acid metabolism, which declined in response to colitis and correlated with reduced expression of genes involved in fatty acid oxidation. These results illuminate the flow of carbon from the diet to the host via the microbiota, disruptions to which may affect energy homeostasis in the distal gut and contribute to the development of colitis.
Project description:We sequenced mRNA from 12 samples extracted from mouse amygdala tissue to generate the first amygdala-specific murine transcriptome for germ-free mice (GF), conventionally raised controls (CON) and germ-free mice that have been colonized with normal microbiota from postnatal day 21 (exGF).
Project description:To understand the effect of microbes on microRNAs in aorta, in this study, we examined expression of microRNA in the aorta of male (10 weeks old) germ-free mice and pathogen-free mice (control).
Project description:Purpose: The goals of this study are to compare bulk RNAseq profiles of tissue neutrophils in germ free mice. Methods: Bulk RNAseq of sorted neutrophils from spleen, blood, lung from spf and germ free mice, using Illumina. The sequence reads that passed quality filters were analyzed at the gene level with RSEM.
Project description:We sequenced mRNA from 12 samples extracted from mouse prefrontal cortex tissue to generate the first prefrontal cortex-specific murine transcriptome for germ-free mice (GF), conventionally raised controls (CON) and germ-free mice that have been colonized with normal microbiota from postnatal day 21 (exGF).
Project description:We sequenced mRNA from 12 samples extracted from mouse amygdala tissue to generate the first amygdala-specific murine transcriptome for germ-free mice (GF), conventionally raised controls (CON) and germ-free mice that have been colonized with normal microbiota from postnatal day 21 (exGF). Equal amounts of RNA from two to three animals were pooled to yield 4 samples per group (CON, GF, and exGF). Pairwise comparisons for CONvsGF, CONvsexGF, GFvsexGF were performed using DESeq2.
Project description:A proteomic dataset comparing organ tissue differences between germ-free mice to conventional mice. Additional files include supplementary tables for reanalysis.