Project description:Microarray analyses of sweet orange leaves infiltrated with Xc in the presence or absence of Ch, or Ch alone This experiment was used to identify genes up-regulated by Xc independently of protein synthesis Citrus leaves were infiltrated with a suspension of Xc with or without Ch, and mRNA was extrated and processed 8h post inoculation (8hpi)
Project description:Microarray analyses of sweet orange leaves infiltrated with Xc in the presence or absence of Ch, or Ch alone This experiment was used to identify genes up-regulated by Xc independently of protein synthesis
Project description:Structures, relative energies, and bonding characteristics for various conformers of 3-imino-N-(oxoboryl)prop-1-en-1-amine, HN=CH-CH=CH-NH-BO, and the corresponding borocycle (-HN=CH-CH=CH-NH-B-)O are discussed using results from second-order Møller-Plesset (MP2) perturbation theory with the Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, and cc-pVTZ basis sets. These MP2 results are compared to those from computationally efficient density functional theory (DFT) calculations using the LDA, PBE, TPSS, BLYP, B3LYP, BVP86, OLYP, O3LYP, and PBE1PBE functionals in conjunction with the economical Pople-type 6-311++G(d,p) basis set to evaluate the suitability of these DFT/6-311++G(d,p) levels for use with larger boron-containing systems. The effects of an aqueous environment were incorporated into the calculations using COSMO methodology. The calculated boron-oxygen bond lengths, orbital compositions, and bond orders in all the (acyclic) HN=CH-CH=CH-NH-BO conformers were consistent with the presence of a boron-oxygen triple bond, similar to that found in H-BO and H2N-BO. The (-HN=CH-CH=CH-NH-B-)O borocycle is predicted to be planar (C2v symmetry), and it is approximately 30 kcal/mol lower in energy than any of the (acyclic) HN=CH-CH=CH-NH-BO conformers; the boron-oxygen bond in this borocycle has significant double bond character, a bonding scheme for which there has been only one experimental structure reported in the literature (Vidovic, D. ; et al. J. Am. Chem. Soc. 2005, 127, 4566- 4569).