Project description:Bacteria protect themselves from infection by bacteriophages (phages) using different defence systems, such as CRISPR-Cas. Although CRISPR-Cas provides phage resistance, fitness costs are incurred, such as through autoimmunity. CRISPR-Cas regulation can optimise defence and minimise these costs. We recently developed a genome-wide functional genomics approach (SorTn-seq) for high-throughput discovery of regulators of bacterial gene expression. Here, we applied SorTn-seq to identify loci influencing expression of the two type III-A Serratia CRISPR arrays. Multiple genes affected CRISPR expression, including those involved in outer membrane and lipopolysaccharide synthesis. By comparing loci affecting type III CRISPR arrays and cas operon expression, we identified PigU (LrhA) as a repressor that co-ordinately controls both arrays and cas genes. By repressing type III-A CRISPR-Cas expression, PigU shuts off CRISPR-Cas interference against plasmids and phages. PigU also represses interference and CRISPR adaptation by the type I-F system, which is also present in Serratia. RNA sequencing demonstrated that PigU is a global regulator that controls secondary metabolite production and motility, in addition to CRISPR-Cas immunity. Increased PigU also resulted in elevated expression of three Serratia prophages, indicating their likely induction upon sensing PigU-induced cellular changes. In summary, PigU is a major regulator of CRISPR-Cas immunity in Serratia.
Project description:During infection, phages manipulate bacteria to redirect metabolism towards viral proliferation. To counteract phages, some bacteria employ CRISPR-Cas systems that provide adaptive immunity. While CRISPR-Cas mechanisms have been studied extensively, their effects on both the phage and the host during phage infection remains poorly understood. Here, we analysed the infection of Serratia by a siphovirus (JS26) and the transcriptomic response with, or without type I-E or I-F CRISPR-Cas immunity. In non-immune Serratia, phage infection altered bacterial metabolism by upregulating anaerobic respiration and amino acid biosynthesis genes, while flagella production was suppressed. Furthermore, phage proliferation required a late-expressed viral Cas4, which did not influence CRISPR adaptation. While type I-E and I-F immunity provided robust defence against phage infection, phage development still impacted the bacterial host. Moreover, DNA repair and SOS response pathways were upregulated during type I immunity. We also discovered that the type I-F system is controlled by a positive autoregulatory feedback loop that is activated upon phage targeting during type I-F immunity, leading to a controlled anti-phage response. Overall, our results provide new insight into phage-host dynamics and the impact of CRISPR immunity within the infected cell.
Project description:ϕXacN1 is a novel jumbo myovirus infecting the causative agent of Asian citrus canker, Xanthomonas citri. Its linear 384,670 bp double-stranded DNA genome encodes 592 predicted protein coding genes and shows 65,875 bp direct terminal repeats (DTRs), so far the longest DTRs among sequence phage genomes. The DTRs harbor 56 tRNA genes, corresponding to all 20 amino acids. This is the highest number of tRNA genes reported in a phage genome. Codon usage analyses revealed a propensity that the phage encoded tRNAs target codons that are highly used by the phage but less frequently by its host. The existence of these tRNA genes, additional seven translation-related genes as well as a chaperonin gene found in the ϕXacN1 genome suggests an increased level of independence of phage replication on host molecular machinery and a wide host range. Consistently, ϕXacN1 showed a wider host range than other X. citri phages in an infection test against a panel of X. citri strains. Phylogenetic analyses revealed a clade of phages composed of ϕXacN1 and ten other jumbo phages showing an evolutionary stability in their large genome sizes.
Project description:Jumbo phages ϕRP31/ϕRP12 infecting Ralstonia solanacearum were isolated in Thailand. Virion proteins of ϕRP31 separated by SDS-PAGE were visualized with Coomassie Brilliant Blue. The protein bands were excised from the gel, digested with trypsin, and analyzed by liquid chromatography-tandem mass spectrometry (LTQ Orbitrap XL). Assignment of tandem mass spectrometry data to tryptic peptides encoded by phage open reading frames was completed using an established procedure (Ahmad et al., 2014). Based on these genomic similarities, proteomic tree and gene phylogenies, we propose that ϕRP12 and ϕRP31 are new members of the group of ϕKZ-related phages.
Project description:Pseudomonas virus PA5oct has a large, linear, double-stranded DNA genome (286,783 bp) and is related to Escherichia phages 121Q/PBECO 4, Klebsiella phage vB_KleM-RaK2, Klebsiella phage K64-1, and Cronobacter phage vB_CsaM_GAP32. A protein-sharing network analysis highlights the conserved core genes within this clade. Combining hybrid genome sequencing, RNA-Seq and mass spectrometry analyses of its virion proteins allowed us to accurately identify genes and elucidate regulatory elements for this phage (ncRNAs, tRNAs and promoter elements). In total PA5oct encodes 449 CDS of which 93, have been identified as virion-associated based on ESI-MS/MS. The RNA-Seq-based temporal genome organization suggests a gradual take-over by viral transcripts from 21%, 69%, and 93% at 5, 15 and 25 min after infection, respectively . Like many large phages, PA5oct is not organized into contiguous regions of temporal transcription. However, although the temporal regulation of the PA5oct genome expression reveals specific genome clusters expressed in early and late infection, many genes encoding experimentally observed structural proteins surprisingly appear to remain almost untranscribed throughout the infection cycle. Within the host, operons associated with elements of a cryptic Pf1-like prophage are upregulated, as are operons responsible for Psl exopolysaccharide (pslE-J) and periplasmic nitrate reductase (napA-F) production. The characterization described here represents a crucial step towards understanding the genomic complexity as well as molecular diversity of jumbo viruses.