Project description:The spread of carbapenemase-producing Enterobacterales (CPE) is emerging as a significant clinical concern in tertiary hospitals and in particular, long-term care facilities with deficiencies in infection control. This study aims to evaluate an advanced matrix-assisted laser desorption/ionization mass spectrometry (A-MALDI) method for the identification of carbapenemases and further discrimination of their subtypes in clinical isolates. The A-MALDI method was employed to detect CPE target proteins. Enhancements were made to improve detectability and mass accuracy through the optimization of MALDI-TOF settings and internal mass calibration. A total of 581 clinical isolates were analyzed, including 469 CPE isolates (388 KPC, 51 NDM, 40 OXA, and 2 GES) and 112 carbapenemase-negative isolates. Clinical evaluation of the A-MALDI demonstrated 100% accuracy and precision in identifying all the collected CPE isolates. Additionally, A-MALDI successfully discriminated individual carbapenemase subtypes (KPC-2 or KPC-3/4; OXA-48 or OXA-181 or OXA-232; GES-5 or GES-24) and also differentiated co-producing carbapenemase strains (KPC & NDM; KPC & OXA; KPC & GES; NDM & OXA), attributed to its high mass accuracy and simultaneous detection capability. A-MALDI is considered a valuable diagnostic tool for accurately identifying CPE and carbapenemase’s subtypes in clinical isolates. It may also aid in selecting appropriate antibiotics for each carbapenemase subtype. Ultimately, we expect that the A-MALDI method will contribute to preventing the spread of antibiotic resistance and improving human public health.
Project description:The spread of carbapenemase-producing Enterobacterales (CPE) is emerging as a significant clinical concern in tertiary hospitals and in particular, long-term care facilities with deficiencies in infection control. This study aims to evaluate an advanced matrix-assisted laser desorption/ionization mass spectrometry (A-MALDI) method for the identification of carbapenemases and further discrimination of their subtypes in clinical isolates. The A-MALDI method was employed to detect CPE target proteins. Enhancements were made to improve detectability and mass accuracy through the optimization of MALDI-TOF settings and internal mass calibration. A total of 581 clinical isolates were analyzed, including 469 CPE isolates (388 KPC, 51 NDM, 40 OXA, and 2 GES) and 112 carbapenemase-negative isolates. Clinical evaluation of the A-MALDI demonstrated 100% accuracy and precision in identifying all the collected CPE isolates. Additionally, A-MALDI successfully discriminated individual carbapenemase subtypes (KPC-2 or KPC-3/4; OXA-48 or OXA-181 or OXA-232; GES-5 or GES-24) and also differentiated co-producing carbapenemase strains (KPC & NDM; KPC & OXA; KPC & GES; NDM & OXA), attributed to its high mass accuracy and simultaneous detection capability. A-MALDI is considered a valuable diagnostic tool for accurately identifying CPE and carbapenemase’s subtypes in clinical isolates. It may also aid in selecting appropriate antibiotics for each carbapenemase subtype. Ultimately, we expect that the A-MALDI method will contribute to preventing the spread of antibiotic resistance and improving human public health.
Project description:Strains: non-producing refernece strain pXMJ19 (CR099 pXMJ19; Goldbeck et al., 2021) and Pediocin-producer pxMJ19 ped (CR099 pXMJ19 Ptac pedACDCg, Goldbeck et al., 2021) Pediocin-producing and non-producing strains of Corynebacterium glutamicum were compared in a whole genome microarray analysis setup in order to identify potential strain optimization targets
2023-03-08 | GSE220713 | GEO
Project description:whole-genome sequencing of KPC-producing Pseudomonas aeruginosa
| PRJNA790682 | ENA
Project description:whole-genome sequencing of KPC-producing Pseudomonas aeruginosa
Project description:Erythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. We used transcriptomic approach to compare whole genome expression in erythromycin high-producing strain, compared to the wild type S. erythraea strain in four stages of fermentation. 2 strains (3 individual fermentations each), 4 time points --> 24 samples (2 exluded from anaysis, 22 remaining); one color design