Project description:Harmful algal blooms are induced largely by nutrient enrichment common in warm waters. An increasingly frequent phenomenon is the “red tide”: blooms of dinoflagellate microalgae that accumulate toxins lethal to other organisms in high doses. Here, we present the de novo assembled genome (~4.75 Gbp) of Prorocentrum cordatum, a globally abundant, bloom-forming dinoflagellate, and the associated transcriptome, proteome, and metabolome data from axenic cultures to elucidate the microalgal molecular responses to heat stress. We discovered, in a high-G+C genome with long introns and extensive genetic duplication, a complementary mechanism between RNA editing and exon usage that regulates dynamic expression and functional diversity of genes and proteins, and metabolic profiles that reflect reduced capacities in photosynthesis, central metabolism, and protein synthesis. These results based on multi-omics evidence demonstrate the genomic hallmark of a bloom-forming dinoflagellate, and how the complex gene structures combined with multi-level transcriptional regulation underpin concerted heat-stress responses.
2023-10-18 | PXD046193 | Pride
Project description:Metabarcoding analysis of harmful algal bloom species in the Changjiang Estuary
| PRJNA689325 | ENA
Project description:Bacterial community dynamics during a harmful algal bloom of Heterosigma akashiwo
Project description:Prymnesium parvum is regarded as one of the most notorious harmful algal bloom (HAB) species worldwide. In recent years, it has frequently formed toxic blooms in coastal and brackish waters of America, Europe, Australia, Africa and Asia, causing large-scale mortalities of wild and cultured fish and other gill-breathing animals. In the last decade, blooms of P. parvum have expanded to inland fresh waters in the USA, presumably due to changes in environmental conditions. The aim of the experiment was to establish the gill transcriptomic responses to P. parvum in rainbow trout. We used 2 different concentrations of P. parvum and identified fish with low and moderate responses to the algae. Based on the dose of and the fish response, fish were classified into 4 groups with high exposure/moderate response (HM), high exposure/low response (HL), low exposure/low response (LL) and control group (C) with no exposure/no response. Gene expression profiling of the gill tissue was performed using a microarray platform developed and validated for rainbow trout.