Project description:The aim of this study was to profile transcriptome data, in particular circRNA expression, in lymph node tumour specimens from patients with Mantle Cell Lymphoma at diagnosis
Project description:Sepioloidea lineolata, the striped pyjama squid (family Sepidariidae), is a small species of benthic squid distributed along the Southern Indo-Pacfic coast of Australia. All Sepiadariid squids are known to secrete large volumes of viscous slime when stressed. The proteome of the slime, dorsal and ventral mantle muscle, the dorsal and ventral mantle epithelium and ventral mantle glands was analysed by combining label-free quantitative analysis using high resolution mass spectrometry data with an S. lineolata transcriptome assembled from give tissues including slime. A total of 28 highly positively differentially expressed proteins were identified within the slime and were predominately comprised of a host of enzymes including peptidases and protease inhibitors. Seven of these proteins contained predicted signal peptides, indicating classical secretion, with four proteins having no identifiable domains or similarity to any known proteins.
Project description:In order to elucidate chromatin binding regions of ESR2 in Mantle cell lymphoma, we used ESR2 antibodies, opti-mized chromatin-immunoprecipitation (ChIP), and performed ChIP-Seq of ESR2 over-expressed Granta-519 cells and Granta519-mock cells.We present for the first time, the cistrome of nuclear receptor ESR2 in Mantle cell lymphoma cell line.
Project description:The mantle is a thin tissue from which proteins are secreted dictating the mollusk shell construction. As a conserved organ involved in shell formation throughout mollusks, the mantle is an excellent foundation from which to study biomineralization. A P. maxima mantle tissue specific cDNA microarray, termed PmaxArray 1.0, has been developed comprising 5000 cDNA transcripts derived from the mantle tissue of P. maxima. This tool has been used to investigate the spatial functional dynamics of the mantle tissue identifying over 2000 PmaxArray 1.0 spots as differentially expressed spatially within this organ. Gene expression profiles observed for these transcripts indicated 5 major spatial functions for the mantle, 3 of which have been putatively attributed to shell formation roles associated with nacre microstructure, calcite prismatic microstructure and periostracum. These transcripts are further examined with in situ expression localization and comparative sequence analyses in reference to potential shell formation roles. This spatial investigation has expedited the elucidation of functions within the dynamic mantle organ, paying particular attention to of shell biomineralization. Keywords: Spatial expression profiling by array
Project description:The mantle is a thin tissue from which proteins are secreted dictating the mollusk shell construction. As a conserved organ involved in shell formation throughout mollusks, the mantle is an excellent foundation from which to study biomineralization. A P. maxima mantle tissue specific cDNA microarray, termed PmaxArray 1.0, has been developed comprising 5000 cDNA transcripts derived from the mantle tissue of P. maxima. This tool has been used to investigate the spatial functional dynamics of the mantle tissue identifying over 2000 PmaxArray 1.0 spots as differentially expressed spatially within this organ. Gene expression profiles observed for these transcripts indicated 5 major spatial functions for the mantle, 3 of which have been putatively attributed to shell formation roles associated with nacre microstructure, calcite prismatic microstructure and periostracum. These transcripts are further examined with in situ expression localization and comparative sequence analyses in reference to potential shell formation roles. This spatial investigation has expedited the elucidation of functions within the dynamic mantle organ, paying particular attention to of shell biomineralization. Keywords: Spatial expression profiling by array The mantle tissue from 9 animals was dissected into 5 separate sections: outer fold (OF), middle fold (MF), inner fold (IF), ventral mantle tissue (VM) and dorsal mantle tissue (DM). Total RNA was extracted from these tissues and pooled across subjects in order to reduce the effect of biological variation; such that 3 individuals were pooled together totaling 3 pooled replicate samples for each tissue. All the biologically pooled tissue types were compared against a common reference in which total RNA from all tissues types and all nine animals was equally pooled. A total of 30 dual channel microarrays hybridizations were performed and analyzed.