Project description:Doxorubicin is an effective chemotherapy drug for treating various types of cancer. However, lethal cardiotoxicity severely limits its clinical use. Recent evidence has indicated that aberrant activation of the cytosolic DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cardiovascular destruction. Here, we investigate the involvement of this mechanism in doxorubicin-induced cardiotoxicity (DIC).
Project description:Doxorubicin is an effective chemotherapy drug for treating various types of cancer. However, lethal cardiotoxicity severely limits its clinical use. Recent evidence has indicated that aberrant activation of the cytosolic DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cardiovascular destruction. Here, we investigate the involvement of this mechanism in doxorubicin-induced cardiotoxicity (DIC).
Project description:Cardiomyocytes derived from human pluripotent stem cells were exposed to the cardiotoxic drug Doxorubicin in order to assess the utility of this cell system as a model for drug-induced cardiotoxicity. Cells are exposed to different concentrations of doxorubicin for up to 48 hours followed by a 12 days recovery period.
Project description:Cardiomyocytes derived from human pluripotent stem cells were exposed to the cardiotoxic drug Doxorubicin in order to assess the utility of this cell system as a model for drug-induced cardiotoxicity. Cells are exposed to different concentrations of doxorubicin for up to 48 hours followed by a 12 days recovery period.
Project description:Phosphodiesterase 10A (PDE10A), by degrading cAMP/cGMP, play critical roles in cardiovascular biology/disease. Cardiotoxicity is a clinical complication of chemotherapy. We aim to determine the role of PDE10A in cancer growth and cardiotoxicity induced by doxorubicin (DOX), a chemotherapy drug. We found that PDE10A deficiency/inhibition alleviated DOX-induced cardiotoxicity in C57Bl/6J mice, including myocardial atrophy, apoptosis, and dysfunction. RNAseq study revealed several PDE10A-regulated signaling associated with DOX-induced cardiotoxicity. In cancer cells, PDE10A inhibition increased the death, decreased the proliferation, and potentiated the effect of DOX in various cancer-cell lines. Importantly, in nude mice with implanted ovarian cancer xenografts, PDE10A inhibition attenuated tumor growth while protected against DOX-induced cardiotoxicity. In isolated cardiomyocytes (CMs), PDE10A contributed to DOX-induced CM death via promoting mitochondrial dysfunction, and to CM atrophy via potentiating foxo3 signaling. Collectively, our study elucidates a novel role for PDE10A in cardiotoxicity and cancer growth in vitro and in vivo, and suggest that PDE10A inhibition may represent a novel strategy in cancer therapy.
Project description:For investigation of the pathology associated to Doxorubicin-induced cardiotoxicity and the therapeutic mechanism enabled by Dexrazoxane and synthetic Magnesium Hexacyanoferrate Nanocatalyst.
Project description:Improvements in the diagnosis and treatment of cancer has revealed the long-term side effects of chemotherapeutics, particularly cardiotoxicity. Current clinical measures to track cardiotoxicity are insufficient to diagnose damage before it has been done, necessitating new, early biomarkers of cardiotoxicity. Here, we collected paired transcriptomics and metabolomics data characterizing in vitro cardiotoxicity to three compounds: 5-fluorouracil, acetaminophen, and doxorubicin. Standard gene enrichment and metabolomics approaches identify some commonly affected pathways and metabolites but are not able to readily identify mechanisms of cardiotoxicity. Here, we integrate this paired data with a genome-scale metabolic network reconstruction (GENRE) of the heart to identify shifted metabolic functions, unique metabolic reactions, and changes in flux in metabolic reactions in response to these compounds. Using this approach, we are able to confirm known mechanisms of doxorubicin-induced cardiotoxicity and provide hypotheses for mechanisms of cardiotoxicity for 5-fluorouracil and acetaminophen.