Project description:N6-methyladenosine (m6A) is a widespread reversible chemical modification of RNAs, implicated in many aspects of RNA metabolism. Little quantitative information exists as to either how many transcript copies of particular genes are m6A modified (âm6A levelsâ), or the relationship of m6A modification(s) to alternative RNA isoforms. To deconvolute the m6A epitranscriptome, we developed m6A level and isoform-characterization sequencing (m6A-LAIC-seq). We found that cells exhibit a broad range of non-stoichiometric m6A levels with cell type specificity. At the level of isoform characterization, we discovered widespread differences in use of tandem alternative polyadenylation (APA) sites by methylated and nonmethylated transcript isoforms of individual genes. Strikingly, there is a strong bias for methylated transcripts to be coupled with proximal APA sites, resulting in shortened 3â untranslated regions (3â-UTRs), while nonmethylated transcript isoforms tend to use distal APA sites. m6A-LAIC-seq yields a new perspective on transcriptome complexity and links APA usage to m6A modifications. m6A-LAIC-seq of H1-ESC and GM12878 cell lines, each cell line has two replicates
Project description:We performed m6A-RIPs in Ascl1-induced neurons (iNeurons) to investigate the neuronal m6A epitranscriptome. Immunoprecipitation was done twice using two different antibodies, acquired from Abcam and Synaptic Systems (SySy), allowing for a more robust detection of m6A modification marks. Additionally, RIP-seq was performed separately with intact and fragmented RNA. The former approach allowed to identify proportions of m6A-modified transcripts among the total number, while the latter approach provided the information to identify genomic coordinates of m6A peaks.
Project description:We report an epitranscriptome-wide mapping of m6A-modified circRNAs (m6A-circRNA) in oral squamous cell carcinoma (OSCC). Utilizing the data of m6A-circRNAs epitranscriptomic microarray analysis, we found that m6A-circRNAs exhibited their particular modification style in OSCC. anti-m6A antibody Synaptic Systems, cat. No. 202003)
Project description:We report an epitranscriptome-wide mapping of m6A-modified circRNAs (m6A-circRNA) in large for gestational age(LGA) placental tissues versus normal gestational age (NGA). Utilizing the data of m6A-circRNAs epitranscriptomic microarray analysis, we found that m6A-circRNAs exhibited their particular modification style in LGA.
Project description:N6-methyladenosine (m6A) is a widespread reversible chemical modification of RNAs, implicated in many aspects of RNA metabolism. Little quantitative information exists as to either how many transcript copies of particular genes are m6A modified (“m6A levels”), or the relationship of m6A modification(s) to alternative RNA isoforms. To deconvolute the m6A epitranscriptome, we developed m6A level and isoform-characterization sequencing (m6A-LAIC-seq). We found that cells exhibit a broad range of non-stoichiometric m6A levels with cell type specificity. At the level of isoform characterization, we discovered widespread differences in use of tandem alternative polyadenylation (APA) sites by methylated and nonmethylated transcript isoforms of individual genes. Strikingly, there is a strong bias for methylated transcripts to be coupled with proximal APA sites, resulting in shortened 3’ untranslated regions (3’-UTRs), while nonmethylated transcript isoforms tend to use distal APA sites. m6A-LAIC-seq yields a new perspective on transcriptome complexity and links APA usage to m6A modifications.