Project description:A comparative profile of miRNAs in pectoral muscle during pigeon development was performed by using high-throughput sequencing. We identified known pigeon miRNAs, novel miRNAs, and miRNAs that are conserved in other birds and mammals.Our results expanded the repertoire of pigeon miRNAs and may be of help in better understanding the mechanism of squab’s rapid development.
Project description:A comparative profile of miRNAs in livers during pigeon development was performed by using high-throughput sequencing. We identified known pigeon miRNAs, novel miRNAs, and miRNAs that are conserved in other birds and mammals.Our results expanded the repertoire of pigeon miRNAs and may be of help in better understanding the mechanism of squab’s rapid development from the perspective of liver development.
2020-04-29 | GSE149501 | GEO
Project description:Genomic diversity of pigeon pea endosymbionts in India
Project description:Fusarium spp. are fungal pathogens of humans and plants. Fusarium oxysporum and Fusarium solani are important species isolated from infections such as onychomycosis, fungal keratitis, invasive infections, and disseminated diseases. These pathologies have a very difficult therapeutic management and poor therapeutic responses, especially in patients with disseminated infection. Little information is available regarding the molecular mechanisms responsible for antifungal resistance in these fungi. methods: In this study, we performed a quantitative analysis of the transcriptional profile of F. oxysporum and F. solani, challenged with amphotericin B (AMB) and posaconazole (PSC) using RNA-seq. Quantitative real-time reverse transcription PCR (qRT-PCR) was used to validate the results results: Several genes related to mechanisms of antifungal resistance such as efflux pumps, ergosterol pathway synthesis, and responses to oxidative stress were found. Genes such as ERG11, ERG5, the Major Facilitator Superfamily (MFS), thioredoxin, and different dehydrogenase genes may explain the reduced susceptibility of Fusarium spp. against azoles and the possible mechanisms that may play an important role in induced resistance against polyenes. conclusions: Important differences in the levels of transcriptional expression were found between F. oxysporum and F. solani exposed to the two different antifungal treatments. Knowledge on the gene expression profiles and gene regulatory networks in Fusarium spp. during exposure to antifungal compounds, may help to identify possible molecular targets for the development of novel, better, and more specific therapeutic compounds. profile transcriptional of Fusarium spp changed to antifungal treatments in vitro
Project description:A comparative profile of miRNAs in pre- and post-differentiated pigeon SMSCs (SMSC-1d and SMSC-5d) was performed by using high-throughput sequencing. We identified known porcine miRNAs, novel miRNAs, and miRNAs that are conserved in other birds and mammals. Our findings demonstrated that miRNAs are extensively involved in the differentiation of SMSCs in pigeons, and provide a valuable resource for the pigeon breeding.
Project description:Deep sequencing of mRNA from the rock pigeon Analysis of ploy(A)+ RNA of different specimens: heart and liver from the rock pigeon (Danish Tumbler, Oriental Frill and Racing)
Project description:Pea (Pisum. sativum L.) is a traditional and important edible legume that can be sorted into grain pea and vegetable pea according to their harvested maturely or not. Vegetable pea by eating the fresh seed is becoming more and more popular in recent years. These two type peas display huge variations of the taste and nutrition, but how seed development and nutrition accumulation of grain pea and vegetable pea and their differences at the molecular level remains poorly understood. To understand the genes and gene networks regulate seed development in grain pea and vegetable pea, high throughput RNA-Seq and bioinformatics analysis were used to compare the transcriptomes of vegetable pea and grain pea developing seed. RNA-Seq generated 18.7 G raw data, which was then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Functional annotation of the unigenes was carried out using the nr, Swiss-Prot, COG, GO and KEGG databases. There were 459 and 801 genes showing differentially expressed between vegetable pea and grain pea at early and late seed maturation phases, respectively. Sugar and starch metabolism related genes were dramatically activated during pea seed development. The up-regulated of starch biosynthesis genes could explain the increment of starch content in grain pea then vegetable pea; while up-regulation of sugar metabolism related genes in vegetable pea then grain pea should participate in sugar accumulation and associated with the increase in sweetness of vegetable pea then grain pea. Furthermore, transcription factors were implicated in the seed development regulation in grain pea and vegetable pea. Thus, our results constitute a foundation in support of future efforts for understanding the underlying mechanism that control pea seed development and also serve as a valuable resource for improved pea breeding.
2017-02-09 | GSE72573 | GEO
Project description:Poor competitiveness of Bradyrhizobium in pigeon pea root colonisation in Indian soils