Project description:P1 encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize silks and red phlobaphene pigments in pericarps and other floral tissues, which contributed to making P1 an important visual marker since the dawn of modern genetics. We conducted RNA-Seq using from maize silks obtained at 2-3 days after emergence. High-throughput sequencing using the Illumina platform resulted in the generation of ~14 million high quality reads, corresponding to ~7 million reads for each sample, from which 76% aligned to the maize genome.
Project description:P1 encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize silks and red phlobaphene pigments in pericarps and other floral tissues, which contributed to making P1 an important visual marker since the dawn of modern genetics. We conducted RNA-Seq using from maize silks obtained at 2-3 days after emergence. High-throughput sequencing using the Illumina platform resulted in the generation of ~14 million high quality reads, corresponding to ~7 million reads for each sample, from which 76% aligned to the maize genome. Examination of two different RNA samples from maize silks obtained at 2-3 days after emergence
Project description:In this study, we sequenced four small RNA libraries derived from mature pollens, in vitro germinated pollens, mature silks and pollinated silks of maize, respectively. In total, 161 known miRNAs belonging to 27 families and 82 novel miRNAs were identified. Of them, miRNAs involved in pollen-silk (pistil) interactions were analyzed. On the male side, miRNA differentially expressed between mature and germinated pollen were identified, some of them participate in pollen germination and tube growth. On the female side, silk-expressed miRNAs respond to pollination were also responsive to stresses, especially drought and fungal invasion. Furthermore, GO analysis of target genes revealed that members related to anxin signal transduction and gene expressional regulation were overrepresented.The results indicated that during pollen-silk interactions, miRNAs-mediated auxin signal transduction plays important roles, and miRNAs took part in complex transcriptional regulating network.
Project description:In this study, we sequenced four small RNA libraries derived from mature pollens, in vitro germinated pollens, mature silks and pollinated silks of maize, respectively. In total, 161 known miRNAs belonging to 27 families and 82 novel miRNAs were identified. Of them, miRNAs involved in pollen-silk (pistil) interactions were analyzed. On the male side, miRNA differentially expressed between mature and germinated pollen were identified, some of them participate in pollen germination and tube growth. On the female side, silk-expressed miRNAs respond to pollination were also responsive to stresses, especially drought and fungal invasion. Furthermore, GO analysis of target genes revealed that members related to anxin signal transduction and gene expressional regulation were overrepresented.The results indicated that during pollen-silk interactions, miRNAs-mediated auxin signal transduction plays important roles, and miRNAs took part in complex transcriptional regulating network. Examination of 4 different tissues of maize to provide novel information for understanding the post-transcriptional regulations of pollen-pistil interactions
Project description:P1 encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize silks and red phlobaphene pigments in pericarps and other floral tissues, which contributed to making P1 an important visual marker since the dawn of modern genetics. We conducted RNA-Seq using pericarps at two different stages, 14 and 25 days after pollination (DAP). High-throughput sequencing using the Illumina platform resulted in the generation of ~20 million high quality reads, from which ~90% aligned to the recently completed maize genome sequence corresponding to ~5 million reads for each one of the four samples.
Project description:P1 encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize silks and red phlobaphene pigments in pericarps and other floral tissues, which contributed to making P1 an important visual marker since the dawn of modern genetics. We conducted RNA-Seq using pericarps at two different stages, 14 and 25 days after pollination (DAP). High-throughput sequencing using the Illumina platform resulted in the generation of ~20 million high quality reads, from which ~90% aligned to the recently completed maize genome sequence corresponding to ~5 million reads for each one of the four samples. Examination of two different RNA samples from two different stages of maize pericarp tissues.
Project description:Trichoderma species can stimulate local and distant immune responses in colonized plant tissues to prevent future pathogenic attacks. Priming of plant defenses is characterized by changes on transcriptional, metabolic, and epigenetic states after stimulus perception. We have previously investigated the transcriptional reprogramming in silk tissues from maize plants inoculated with Trichoderma atroviride and challenged with Fusarium verticillioides (Agostini et al 2019). To better understand about the molecular changes induced by T. atroviride in maize, a proteomic approach was conducted in this instance. Several proteins belonging to different metabolic categories were detected as priming involved proteins. However, we detected a very low correlation with those priming-modulated transcripts suggesting the importance of regulatory events posteriori of transcriptional stage to accomplish the final goal of blocking the pathogen entrance. Specifically, we focused on phenylpropanoid pathway; since we detected several proteins that are upregulated in priming state might explain the cell wall reinforcement and, the increase in the content of flavonoids and lignin in silks of maize plants after induced systemic resistance activation.
Project description:To understand how the NAC transcription factor KIL1 regulates age-induced senescence and cell death in maize silks, we need to get a genome-wide view on its downstream targets. We propose to compare the transcriptome profiles of GOF and LOF transgenic silk tissue with the profile of wild-type B104 silk. 1 cm of basal part of silk from rings 6-10 from plants harboring the dominant-negative repressor proSILK1:KIL1-SRDX, proSILK1:KIL1 overexpressing line, and wild type B104 will be harvested at 11 DASE. This will allow to compare and contrast the expression profiles of KIL1 LOF and GOF mutants with transcriptome data derived from wild type senescent silk.
Project description:Investigating the origins of sericulture is challenging, as classification of silks by species is currently technically difficult. Here we investigate a range of methods for solubilizing modern and archaeological silks and demonstrate a protocol using mass spectrometry-based proteomics to successfully differentiate modern samples of Bombyx, Antheraea, and Samia -produced silks matching samples to species level. We also analyzed archaeological silks from excavations at the ancient city of Palmyra, Syria, and provide evidence that these silks were produced by A. mylitta, which is the first direct evidence supporting the production and trade of Indian wild silk in antiquity.