Project description:Enrichments with labeled CH4 and NO2 were conducted to test microbial community correlations and constrain potential metabolic interactions between methanotrophs and other one-carbon utilizing microorganisms under low O2 conditions
Project description:The objective of this study was to assess whether Methylocystis sp. strain SC2, as a representative for Methylocystis spp., can utilize hydrogen to optimize the biomass yield by mixed utilization of CH4 and H2, rather than CH4 as the sole source of energy. Thus, we aimed to show that, in the presence of H2, CH4 will primarily be used for synthesis of cell carbon and increased biomass/protein yield. In particular, we intended to explore those CH4/O2 ratios, which maximize the effect of hydrogen addition on the biomass yield and proteome reconstruction of strain SC2. To achieve our goals, we combined hydrogen-based growth experiments with our recently optimized proteomics workflow.
2020-06-03 | PXD015700 | Pride
Project description:Low O2 levels enhance CH4-derived carbon flow into microbial communities in landfill cover soils CH4 derived C flow into landfill microbial communitites
Project description:Methanotrophs, which help regulate atmospheric levels of methane, are active in diverse natural and man-made environments. This range of habitats and the feast-famine cycles seen by many environmental methanotrophs suggest that methanotrophs dynamically mediate rates of methane oxidation. Global methane budgets require ways to account for this variability in time and space. Functional gene biomarker transcripts are increasingly being studied to inform the dynamics of diverse biogeochemical cycles. Previously, per-cell transcript levels of the methane oxidation biomarker, pmoA, were found to vary quantitatively with respect to methane oxidation rates in model aerobic methanotroph, Methylosinus trichosporium OB3b. In the present study, these trends were explored for two additional aerobic methanotroph pure cultures, Methylocystis parvus OBBP and Methylomicrobium album BG8. At steady-state conditions, per cell pmoA mRNA transcript levels strongly correlated with per cell methane oxidation across the three methanotrophs across many orders of magnitude of activity (R2 = 0.91). Additionally, genome-wide expression data (RNA-seq) were used to explore transcriptomic responses of steady state M. album BG8 cultures to short-term CH4 and O2 limitation. These limitations induced regulation of genes involved in central carbon metabolism (including carbon storage), cell motility, and stress response.
Project description:Background: Biological conversion of the surplus of renewable electricity to CH4 could support energy storage and strengthen the power grid. Biological methanation (BM) is closely linked to the activity of biogas-producing bacterial community and methanogenic Archaea in particular. During reactor operations, the microbiome is often subject to various changes whereby the microorganisms are challenged to adapt to the new conditions. In this study, a hydrogenotrophic-adapted microbial community in a laboratory-scale BM fermenter was monitored for its pH, gas production, conversion yields and composition. To investigate the robustness of BM regarding power oscillations, the biogas microbiome was exposed to five H2 starvations patterns for several hours.
Project description:Characterization of microbial communities at the genomic, transcriptomic, proteomic and metabolomic levels, with a special interest on lipid accumulating bacterial populations, which are naturally enriched in biological wastewater treatment systems and may be harnessed for the conversion of mixed lipid substrates (wastewater) into biodiesel. The project aims to elucidate the genetic blueprints and the functional relevance of specific populations within the community. It focuses on within-population genetic and functional heterogeneity, trying to understand how fine-scale variations contribute to differing lipid accumulating phenotypes. Insights from this project will contribute to the understanding the functioning of microbial ecosystems, and improve optimization and modeling strategies for current and future biological wastewater treatment processes. This project contains datasets derived from the same biological wastewater treatment plant. The data includes metagenomes, metatranscriptomes, metaproteomes and organisms isolated in pure cultures. Characterization of microbial communities at the genomic, transcriptomic, proteomic and metabolomic levels, with a special interest on lipid accumulating bacterial populations, which are naturally enriched in biological wastewater treatment systems and may be harnessed for the conversion of mixed lipid substrates (wastewater) into biodiesel. The project aims to elucidate the genetic blueprints and the functional relevance of specific populations within the community. It focuses on within-population genetic and functional heterogeneity, trying to understand how fine-scale variations contribute to differing lipid accumulating phenotypes. Insights from this project will contribute to the understanding the functioning of microbial ecosystems, and improve optimization and modeling strategies for current and future biological wastewater treatment processes. This project contains datasets derived from the same biological wastewater treatment plant. The data includes metagenomes, metatranscriptomes, metaproteomes and organisms isolated in pure cultures.
Project description:In this study, we investigated the metabolic potential of N. marina based on its complete genome sequence and performed physiological experiments to test genome-derived hypotheses. Our data confirm that N. marina benefits from additions of undefined organic carbon substrates, has adaptations to resist oxidative, osmotic and UV light-induced stress and low dissolved pCO2. Additionally, N. marina is able to grow chemoorganotrophically on formate, and is thus not an obligate chemolithoautotroph. We further investigated the metabolic response of N. marina to low (5.6 µM) O2 concentrations. In response to O2-limited conditions, the abundance of a potentially more efficient CO2-fixing pyruvate:ferredoxin oxidoreductase (POR) complex and a high-affinity cbb3-type terminal oxidase increased, suggesting a role in sustaining nitrite oxidation-driven autotrophy under O2 limitation.
Project description:In this study we investigated the steady-state growth of Methylotuvimicrobium alcaliphilum 20ZR in media containing calcium (Ca) or lanthanum (La, a REE element). RNA-seq profiling of Methylomicrobium alcaliphilum strain 20ZR in bioreactor on methane. Sample cultures, La-optimum, La-CH4 limited, Ca-optimum and Ca-CH4 limited, were collected and immediately transferred into tubes containing 5 ml of the stop solution (5% water-equilibrated phenol in ethanol). It was found, that cells supplemented with La show a higher growth rate compared to Ca-cultures; however, the efficiency of carbon conversion, estimated as biomass yield, is higher in cells grown with Ca. The study was financially supported by DOE under FOA DE-FOA-0001085 and by NSF-CBET award 1605031
Project description:High NH4+ load is known to competitively inhibit bacterial methane oxidation. This is due to a competition between CH4 and NH4+/NH3 for the active site of particulate methane monooxygenase (pMMO), which converts CH4 to CH3OH. Here, we combined growth experiments with global proteomics to elucidate the capability of the methanotroph Methylocystis sp. strain SC2 in acclimatizing to increased NH4+ levels. Our experimental approach also involved amino acid profiling and measurement of NOx compounds. Relative to 1 mM NH4+, high (50 mM and 75 mM) NH4+ load under CH4 replete conditions significantly increased lag phase duration required for proteome adjustment. The proteomic and metabolic responses to increasing ionic and osmotic stress involved significant upregulation of stress-responsive proteins, K+ “salt in” strategy, synthesis of compatible solutes (glutamate and proline), and induction of the glutathione metabolism pathway. A significant increase in the apparent Km value for CH4 oxidation during the growth phase was indicative of increased pMMO-based oxidation of NH4+/NH3 to toxic hydroxylamine. The detoxifying activity of hydroxlyamine oxidoreductase (HAO) led to a significant accumulation of NO2- and, upon decreasing O2 tension, N2O. Putative free intermediate of HAO activity was NO, with NO reductase and hybrid cluster proteins (Hcps) being the candidate enzymes for the reduction of NO to N2O. In summary, strain SC2 has the capacity to precisely rebalance enzymes and osmolyte composition, but the need to simultaneously combat both ionic-osmotic stress and the toxic effects of hydroxylamine may be the reason why its acclimatization capacity is limited to 75 mM NH4+.
Project description:The fate of the carbon stocked in permafrost soils following global warming and permafrost thaw is of major concern in view of the potential for increased CH4 and CO2 emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but their composition and functional potential in permafrost soils are largely unknown. Here, a 2 m deep permafrost and its overlying active layer soil were subjected to metagenome sequencing, quantitative PCR, and microarray analyses. The active layer soil and 2 m permafrost soil microbial community structures were very similar, with Actinobacteria being the dominant phylum. The two soils also possessed a highly similar spectrum of functional genes, especially when compared to other already published metagenomes. Key genes related to methane generation, methane oxidation and organic matter degradation were highly diverse for both soils in the metagenomic libraries and some (e.g. pmoA) showed relatively high abundance in qPCR assays. Genes related to nitrogen fixation and ammonia oxidation, which could have important roles following climatic change in these nitrogen-limited environments, showed low diversity but high abundance. The 2 m permafrost soil showed lower abundance and diversity for all the assessed genes and taxa. Experimental biases were also evaluated and showed that the whole community genome amplification technique used caused large representational biases in the metagenomic libraries. This study described for the first time the detailed functional potential of permafrost-affected soils and detected several genes and microorganisms that could have crucial importance following permafrost thaw. A 2m deep permafrost sample and it overlying active layer were sampled and their metagenome analysed. For microarray analyses, 8 other soil samples from the same region were used for comparison purposes.