Project description:The genomic studies was designed to identify genes differentially expressed in tumor versus normal breast tissue. We aimed at identifying novel Antibody Drug Conjugate (ADC) targets that could be used to treat Triple Negative Breast Cancer (TNBC). Comparative genomic studies between normal breast and TNBC tissues, together with proteomic and bioinformatic analyses resulted in the elaboration of a catalog of potential ADC targets.
Project description:Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer that exhibits extremely high levels of genetic complexity and yet a relatively uniform transcriptional program. We postulate that TNBC might be highly dependent on uninterrupted transcription of a key set of genes within this gene expression program and might therefore be exceptionally sensitive to inhibitors of transcription. Utilizing a novel kinase inhibitor and CRISPR/Cas9-mediated gene editing, we show here that triple-negative but not ER/PR+ breast cancer cells are exceptionally dependent on CDK7, a transcriptional cyclin-dependent kinase. TNBC cells are unique in their dependence on this transcriptional CDK and suffer apoptotic cell death upon CDK7 inhibition. An “Achilles cluster” of TNBC-specific genes are extremely sensitive to CDK7 inhibition and frequently associated with super-enhancers. We conclude that CDK7 mediates transcriptional addiction to a vital cluster of genes in TNBC and CDK7 inhibition may be useful therapy for this challenging cancer. Expression microarrays in H3K27ac in triple-negative breast cancer +/- treatment with covalent CDK7 inhibitor THZ1 treatment
Project description:This phase I trial is studying the side effects and best dose of giving 7-hydroxystaurosporine together with irinotecan hydrochloride in treating patients with metastatic or unresectable solid tumors, including triple-negative breast cancer (currently enrolling only patients with triple-negative breast cancer since 6/8/2007). Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Giving 7-hydroxystaurosporine together with irinotecan hydrochloride may help kill more cancer cells by making tumor cells more sensitive to the drug.
Project description:Discrepancies in the prognosis of triple negative breast cancer exist between Caucasian and Asian populations. Yet, the gene signature of triple negative breast cancer specifically for Asians has not become available. Therefore, the purpose of this study is to construct a prediction model for recurrence of triple negative breast cancer in Taiwanese patients.
Project description:This microarray dataset contains 51 triple-negative breast cancers with clinical and recurrence information for at least 3 years of follow-up and 106 luminal breast cancers (reanalyzed data from Series GSE24124, GSE9309, and GSE17040). A novel set of 45-gene signature that was statistically predictive of distant metastasis recurrence for triple-negative breast cancer was identified in this study.
Project description:Discrepancies in the prognosis of triple negative breast cancer exist between Caucasian and Asian populations. Yet, the gene signature of triple negative breast cancer specifically for Asians has not become available. Therefore, the purpose of this study is to construct a prediction model for recurrence of triple negative breast cancer in Taiwanese patients. Whole genome expression profiling of breast cancers from 185 patients in Taiwan from 1995 to 2008 was performed, and the results were compared to the previously published literature to detect differences between Asian and Western patients. Pathway analysis and Cox proportional hazard models were applied to construct a prediction model for the recurrence of triple negative breast cancer. Most expression data of samples (181/185) were reanalyzed from previous studies already uploaded to GEO (see "reanalysis of" links below). Four additional gene expression profiling data of triple negative breast cancer sample were added to this study.