Project description:Background and aims Climate warming has become an indisputable fact, and wheat is among the most heat-sensitive cereal crops. Heat stress during grain filling threatens global wheat production and food security. Here, we analyzed the physiological and proteomic changes by delayed sowing on the photosynthetic capacity of winter wheat leaves under heat stress. Our aim is to provide a new cultivation way for the heat stress resistance in wheat. Methods Through 2 years field experiment and an open warming simulation system, we compared the changes in wheat grain weight, yield, photosynthetic rate, and chlorophyll fluorescence parameters under heat stress at late grain–filling stage during normal sowing and delayed sowing. At the same time, based on the iTRAQ proteomics, we compared the changes of differentially expressed proteins (DEPs) during the two sowing periods under high temperature stress.
Project description:Grain yield and protein content were determined for six wheat cultivars grown over three years at multiple sites and at multiple N-fertilizer inputs. Although grain protein was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to calculate GPD across environment and to correlate gene expression in the developing caryopsis with this trait. The yield and protein content were initially adjusted for nitrogen fertilizer inputs, and then adjusted for yield (to remove the negative correlation) resulting in environmental corrected GPD. The transcriptome data for all samples were subjected to Principal Component Analysis (PCA) and ANOVA to identify individual Principal Components (PCs) correlating with GPD alone. Scores of the selected PCs significantly related to cultivar differences and GPD but not to the yield or protein content were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Sets of genes significant for these PCs and hence GPD were identified as candidate genes determining cultivar differences in GPD. Microarray profiling has been used to identify the links between gene expression and grain protein content in 6 different varietes of wheat grown at 2 different sites, 3 N levels and during 3 growth seasons.
Project description:Oats (Avena sativa L.) are a healthy food, being high in dietary fibre (e.g. β-glucans), antioxidants, minerals, and vitamins. Understanding the effect of variety and crop management on nutritional quality is important. The response of four oat varieties to increased nitrogen levels was investigated across multiple locations and years with respect to yield, grain quality and metabolites (assessed via GC- and LC- MS). A novel high-resolution UHPLC-PDA-MS/MS method was developed, providing improved metabolite enrichment, resolution, and identification. The combined phenotyping approach revealed that, amino acid levels were increased by nitrogen supplementation, as were total protein and nitrogen containing lipid levels, whereas health-beneficial avenanthramides were decreased. Although nitrogen addition significantly increased grain yield and β-glucan content, supporting increasing the total nitrogen levels recommended within agricultural guidelines, oat varietal choice as well as negative impacts upon health beneficial secondary metabolites and the environmental burdens associated with nitrogen fertilisation, require further consideration.
2021-04-26 | MTBLS1801 | MetaboLights
Project description:soil bacterial community after stevia cultivation in 2 years continuous cropping and 8 years continuous cropping
Project description:In rice (Oryza sativa L.), the number of panicles, spikelets per panicle and grain weight are important components of grain yield. These characteristics are controlled by quantitative trait loci (QTLs) and are derived from variation inherent in crops.The identification of different yield related QTLs facilitates an understanding of the mechanisms involved in cereal crop yield, and may have utility in improving grain yield in cereal crops. an understanding of the mechanisms involved in cereal crop yield, and may have utility in improving grain yield in cereal crops. In the present study, We cloned and characterized a large-panicle QTL, and confirmed that the newly identified gene OsEBS (enhancing biomass and spikelet number) increased plant height, leaf size and spikelet number per panicle, leading to an average of 37.62% increase in total grain yield per plant. trait loci (QTLs) and are derived from variation inherent in crops.
Project description:In rice (Oryza sativa L.), the number of panicles, spikelets per panicle and grain weight are important components of grain yield. These characteristics are controlled by quantitative trait loci (QTLs) and are derived from variation inherent in crops.The identification of different yield related QTLs facilitates an understanding of the mechanisms involved in cereal crop yield, and may have utility in improving grain yield in cereal crops. an understanding of the mechanisms involved in cereal crop yield, and may have utility in improving grain yield in cereal crops. In the present study, We cloned and characterized a large-panicle QTL, and confirmed that the newly identified gene OsEBS (enhancing biomass and spikelet number) increased plant height, leaf size and spikelet number per panicle, leading to an average of 37.62% increase in total grain yield per plant. trait loci (QTLs) and are derived from variation inherent in crops. OsEBS-transgenic rice B10201 and B10301 and control Guichao2
Project description:Transgenic rice plants expressing the Arabidopsis phloem-specific sucrose transporter AtSUC2, which loads Suc into the phloem, showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. The goal was to reveal how expressed AtSUC2 in rice leads to increased grain yield analyzing global gene expression.
Project description:In the current study, we characterized an miRNA, OsmiR397, which was found to be associated with increased grain size, more rice panicle branching and higher grain productivity. We also elucidated the molecular mechanisms by which OsmiR397 increased grain yield. This miRNA downregulated the expression of its target gene, OsLAC, which then affected the sensitivity of plants to brassinosteroids. These results should be useful for breeding high-yield crops through genetic engineering. We performed RNA-seq on the young panicles of the wild-type, OXmiR397b and OXLAC plants and found that lots of brassinosteroid-related genes were differentially expressed between the three samples
Project description:Melatonin, a natural phytohormone present in most plants, plays multiple roles in plant growth and stress responses. Although melatonin biosynthesis-related genes have been suggested to possess diverse biological functions, their roles and functional mechanisms in regulating rice grain yield remain largely unexplored. Here, we revealed that a rice caffeic acid O-methyltransferase (OsCOMT) gene is involved in melatonin biosynthesis through in vitro and in vivo evidences. Transgenic assays show OsCOMT significantly delays leaf senescence at the grain filling stage, and then improves photosynthesis efficiency. Further experimental and transcriptomic data suggest that OsCOMT inhibits the degradation of chlorophyll and chloroplast, which in turn delay leaf senescence. Histological analysis also reveals the role of OsCOMT in the development of vascular bundle system in rice. The levels of melatonin and cytokinin were significantly increased in the culm of OsCOMT-overexpression plant relative to those of the wild-type (WT). In the OsCOMT-overexpression line, the cytokinin-biosynthesizing genes were up-regulated and the cytokinin-degrading genes were down-regulated, thereby increasing the cytokinin levels compared with the WT. Thus, OsCOMT-mediated vascular patterning may result from the crosstalk between melatonin and cytokinin. More importantly, OsCOMT significantly increased grain number and yield production of rice in various background, including Nipponbare (NIP) and Suken118 (SK118). Our findings show novel insights into melatonin-mediated leaf senescence and vascular patterning, and provide a new strategy to enhance rice yield production.
Project description:Rice grain yield is predicted to decrease in the future because of an increase in tropospheric ozone concentration. However, the underlying mechanisms are unclear. Here, we investigated the responses to ozone of two rice (Oryza Sativa L.) cultivars, Sasanishiki and Habataki. Sasanishiki showed ozone-induced leaf injury, but no grain yield loss. By contrast, Habataki showed grain yield loss with minimal leaf injury. A QTL associated with grain yield loss caused by ozone was identified in Sasanishiki/Habataki chromosome segment substitution lines and included the ABERRANT PANICLE ORGANIZATION 1 (APO1) gene. The Habataki allele of the APO1 locus in a near-isogenic line also resulted in grain yield loss upon ozone exposure, suggesting APO1 involvement in ozone-induced yield loss. Only a few differences in the APO1 amino acid sequences were detected between the cultivars, but the APO1 transcript level was oppositely regulated by ozone exposure: i.e., it increased in Sasanishiki and decreased in Habataki. Interestingly, the levels of some phytohormones (jasmonic acid, jasmonoyl-L-isoleucine, and abscisic acid) known to be involved in attenuation of ozone-induced leaf injury tended to decrease in Sasanishiki but to increase in Habataki upon ozone exposure. These data indicate that ozone-induced grain yield loss in Habataki is caused by a reduction in the APO1 transcript level through an increase in the levels of phytohormones that reduce leaf damage.