Project description:Different fuctional genes have different expression levels in various tissues. Along with the seasons changing, expression level also changes. One-year expression level for functional genes can be indicated by the four seasonal samples and respective time-course change can also be detected. We use microarry chips to study the expression levels for specific genes and explore new functional genes involved in secondary metabolism
Project description:Transcription rate (TR) analysis of W303-1a yeast strain growing in exponential phase in YPD subjected to terbutyl stress Keywords: time course
Project description:HLA-DR-lacking HSPCs [HLA-DR(-) HSPCs] were detected in aplastic anemia (AA) patients with HLA-DR15. HLA-DR(-) HSPCs may evade the attack by CD4+ T-cells recognizing the autoantigen presented by HLA-DR15. The goal of this study is to clarify the immune escape mechanisms from antigen-specific T-cells by comparing the trranscriptome profile of HLA-DR(+) HSPCs and HLA-DR(-) HSPCs.
Project description:Different fuctional genes have different expression levels in various tissues. Along with the seasons changing, expression level also changes. One-year expression level for functional genes can be indicated by the four seasonal samples and respective time-course change can also be detected. We use microarry chips to study the expression levels for specific genes and explore new functional genes involved in secondary metabolism Samples from four tissues (bud, root, xylem and phloem) were collected in different seasons in one year. April and May were the months in spring for collecting samples. June and July were the months in summer for collecting samples. September and October were the months in autumn for collecting samples. December was the month for collecting samples in winter. RNA from each sample was extracted for hybridization.
Project description:Dietary restriction (DR) extends lifespan in a wide variety of species, yet the underlying mechanisms are not well understood. Here we show that the Caenorhabditis elegans HNF4α-related nuclear hormone receptor NHR-62 is required for metabolic and physiologic responses associated with DR-induced longevity. nhr-62 mediates the longevity of eat-2 mutants, a genetic mimetic of dietary restriction, and blunts the longevity response of DR induced by bacterial food dilution at low nutrient levels. Metabolic changes associated with DR, including decreased Oil Red O staining, decreased triglyceride levels, and increased autophagy are partly reversed by mutation of nhr-62. Additionally, the DR fatty acid profile is altered in nhr-62mutants. Expression profiles reveal that several hundred genes induced by DR depend on the activity of NHR-62, including a putative lipase required for the DR response. This study provides critical evidence of nuclear hormone receptor regulation of the DR longevity response, suggesting hormonal and metabolic control of life span.