Project description:To investigate the salt and waterlogging mechanism of barley, we chose salt and waterlogging sensitive and tolerant varieties as subjects. We then performed gene expression profiling analysis using data obtained from RNA-seq of two varieties at two three points.
Project description:In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces.
Project description:Shoot tissue from 17 day old barley plants was used for expression analysis. Targets from three biological replicates of each were generated and the expression profiles were determined using Affymetrix Barley1 Genechip arrays. Comparisons between the control and stressed samples at three time points (3, 8 and 27 h) allow the identification of salt stress responsive genes. Experiment Overall Design: 3 control and 3 salt stressed biological replicates were analyzed at 3, 8 and 27 h.
Project description:We hypothesized that the genome segments of cultivated barley should show certain similarity with its ancestral wild barley. Instead of whole genome sequences, we employed RNA-Seq to investigated the genomic origin of modern cultivated barley using some representative wild barley genotypes from the Near East and Tibet, and representative world-wide selections of cultivated barley.
Project description:A DNA microarray analysis detected large-scale changes of gene expression in response to Cd stress with a substantial difference between the two barley genotypes differing in Cd tolerance and accumulation. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd accumulation. We used microarrays to understand the mechanism of low Cd accumulation in crops which is crucial for sustainable safe food production in Cd-contaminated soils.