Project description:Fruit ripening in Citrus is not well understood at the molecular level. Knowledge of the regulatory mechanism of citrus fruit ripening at the post-transcriptional level in particular is lacking. Here, we comparatively analyzed the miRNAs and their targeted genes in a spontaneous late-ripening mutant, ?Fengwan? sweet orange (MT) (Citrus sinensis L. Osbeck), and its wild-type counterpart ('Fengjie 72-1', WT). Using high-throughput sequencing of small RNAs and RNA degradome tags, we identified 107 known and 21 novel miRNAs, as well as 225 target genes. A total of 24 miRNAs (16 known miRNAs and 8 novel miRNAs) were shown to be differentially expressed between MT and WT. The expression pattern of several key miRNAs and their target genes during citrus fruit development and ripening stages was examined. Csi-miR156k, csi-miR159 and csi-miR166d suppressed specific transcription factors (GAMYBs, SPLs and ATHBs) that are supposed to be important regulators involved in citrus fruit development and ripening. In the present study, miRNA-mediated silencing of target genes was found under complicated and sensitive regulation in citrus fruit. The identification of miRNAs and their target genes provide new clues for future investigation of mechanisms that regulate citrus fruit ripening.
Project description:We sequenced mRNA and small RNA (sRNA) profiles in the interaction between Brachypodium distachyon (Bd) and Serendipita indica (Si; syn. Piriformospora indica), at four (4) days post inoculation (DPI). sRNA sequencing reads of Si-colonized and non-colonized roots, as well as axenic fungal cultures were generated. Three biological samples of each were sequenced, with two technical replicates per sample (SE). Raw reads from sRNA sequencing were submitted to technical adapter trimming (Cutadapt) before upload.
Project description:We sequenced mRNA and small RNA (sRNA) profiles in the interaction between Brachypodium distachyon (Bd) and Serendipita indica (Si; syn. Piriformospora indica), at four (4) days post inoculation (DPI). mRNA sequencing reads of Si-colonized and non-colonized roots, as well as axenic fungal cultures were generated. Three biological samples of each were sequenced, with two technical replicates per sample (PE).
Project description:This experiment was designed to identify transcribed regions of indica rice genome. A series of high-density oligonucleotide tiling arrays that represent sense and antisense strands of the entire nonrepetitive sequence of the chromosome were used to measure transcriptional activities. A total of 838,816 36mer oligonucleotide probes, positioned every 46 nt on average, were designed to interrogate the indica genome, respectively. The probes were synthesized via maskless photolithography at a feature density of approximately 389,000 probes per slide. The arrays were hybridized with fluorescence-labeled cDNA reverse-transcribed from equal amounts of four selected poly(A)+ RNA populations, namely, seedling roots, seedling shoots, panicles, and suspension cultured cells of the respective rice subspecies. Keywords: genome tiling experiments
Project description:Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota) and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyles strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarrays analysis, argues for a biphasic root colonization strategy of P. indica. Our finding provides a significant advance in understanding development of biotrophic plant symbionts and suggests a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi.
Project description:Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota) and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyles strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarrays analysis, argues for a biphasic root colonization strategy of P. indica. Our finding provides a significant advance in understanding development of biotrophic plant symbionts and suggests a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi. P. indica (DSM 11827, DSMZ) was cultivated on complex medium agar plates or liquid medium as described before (Zuccaro et al., 2009). Barley seeds (Hordeum vulgare L. cv. Golden Promise) were surface sterilized with 3 % sodium hypochlorite, rinsed in water and pregerminated for 3 days. To address the experimental design four different treatments were done (P. indica on barley roots on 1/10 PNM medium, P. indica on autoclaved barley roots on 1/10 PNM medium, P. indica on 1/10 PNM medium and P. indica on CM medium), each in three independent biological replications. Root and fungal material was harvested in liquid nitrogen after 24, 36, 48, 72, 120 and 168 hpi. For each time point roots from 15 to 20 living plants or 21 to 36 autoclaved plants were pooled.
Project description:An antifungal aroma substance, 2-phenylethanol (PEA), was isolated from antagonistic yeast strain Kloeckera apiculata extract. Microarry were used to analyse its role citrus. We used microarrays to detail the global programme of gene expression underlying Citrus were treated with 1.0x108 cells/ml K. apiculata (KA), PEA (0.15%), the extract (1000xdilute) and control (CK) for 24 h, An antifungal aroma substance, 2-phenylethanol, was isolated from antagonistic yeast strain Kloeckera apiculata. To analyse its role in Citrus response,Citrus were treated with K. apiculata , 2-phenylethano (0.15%), the extract (1000xdilute) and control (CK) for 24 h, respectively. The fresh epicarp of citrus was separated by knife and directly frozen in liquid nitrogen for RNA extraction and hybridization on Affymetrix microarrays.
Project description:An antifungal aroma substance, 2-phenylethanol (PEA), was isolated from antagonistic yeast strain Kloeckera apiculata extract. Microarry were used to analyse its role citrus. We used microarrays to detail the global programme of gene expression underlying Citrus were treated with 1.0x108 cells/ml K. apiculata (KA), PEA (0.15%), the extract (1000xdilute) and control (CK) for 24 h,