Project description:We developed a novel approach, m6A-seq, for high-resolution mapping of the transcriptome-wide m6A landscape, based on antibody-mediated capture followed by massively parallel sequencing. Identification of m6A modified sequences in HepG2 cells.
Project description:We developed a novel approach, m6A-seq, for high-resolution mapping of the transcriptome-wide m6A landscape, based on antibody-mediated capture followed by massively parallel sequencing Identification of m6A modified sequences in mouse liver and human brain
Project description:m6A profiling in two accessions of Arabidopsis thaliana (Can-0 and Hen-16) using the m6A-targeted antibody coupled with high-throughput sequencing m6A-seq in two accessions of Arabidopsis, two replicates for each sample
Project description:N6-methyladenosine (m6A) is a widespread reversible chemical modification of RNAs, implicated in many aspects of RNA metabolism. Little quantitative information exists as to either how many transcript copies of particular genes are m6A modified (âm6A levelsâ), or the relationship of m6A modification(s) to alternative RNA isoforms. To deconvolute the m6A epitranscriptome, we developed m6A level and isoform-characterization sequencing (m6A-LAIC-seq). We found that cells exhibit a broad range of non-stoichiometric m6A levels with cell type specificity. At the level of isoform characterization, we discovered widespread differences in use of tandem alternative polyadenylation (APA) sites by methylated and nonmethylated transcript isoforms of individual genes. Strikingly, there is a strong bias for methylated transcripts to be coupled with proximal APA sites, resulting in shortened 3â untranslated regions (3â-UTRs), while nonmethylated transcript isoforms tend to use distal APA sites. m6A-LAIC-seq yields a new perspective on transcriptome complexity and links APA usage to m6A modifications. m6A-LAIC-seq of H1-ESC and GM12878 cell lines, each cell line has two replicates
Project description:We developed a novel approach, m6A-seq, for high-resolution mapping of the transcriptome-wide m6A landscape, based on antibody-mediated capture followed by massively parallel sequencing. Identification of m6A modified sequences in HepG2 cells. HepG2 cells were incubated with either IFNg (200ng/ml) or HGF/SF (10 ng/ml) over night. Stress effects were tested in HepG2 cells by either 30 minutes incubation at 43M-BM-:C (heat shock) or UV irradiation of 0.04 J/cm2 followed by 4 hours of recovery in normal growing conditions prior to harvesting using Trypsin.
Project description:Long non-coding RNAs (lncRNAs) are defined as non-protein-coding transcripts that are at least 200 nucleotides long. They are known to play pivotal roles in regulating gene expression, especially during stress responses in plants. We used a large collection of in-house transcriptome data from various soybean (Glycine max and Glycine soja) tissues treated under different conditions to perform a comprehensive identification of soybean lncRNAs. We also retrieved publicly available soybean transcriptome data that were of sufficient quality and sequencing depth to enrich our analysis. In total, RNA-seq data of 332 samples were used for this analysis. An integrated reference-based, de novo transcript assembly was developed that identified ~69,000 lncRNA gene loci. We showed that lncRNAs are distinct from both protein-coding transcripts and genomic background noise in terms of length, number of exons, transposable element composition, and sequence conservation level across legume species. The tissue-specific and time-specific transcriptional responses of the lncRNA genes under some stress conditions may suggest their biological relevance. The transcription start sites of lncRNA gene loci tend to be close to their nearest protein-coding genes, and they may be transcriptionally related to the protein-coding genes, particularly for antisense and intronic lncRNAs. A previously unreported subset of small peptide-coding transcripts was identified from these lncRNA loci via tandem mass spectrometry, which paved the way for investigating their functional roles. Our results also highlight the current inadequacy of the bioinformatic definition of lncRNA, which excludes those lncRNA gene loci with small open reading frames (ORFs) from being regarded as protein-coding.
Project description:<p>Despite the nuclear localization of the m6A machinery, the genomes of multiple exclusively-cytoplasmic RNA viruses, such as chikungunya (CHIKV) and dengue (DENV), are reported to be extensively m6A-modified. However, these findings are mostly based on m6A-seq, an antibody-dependent technique with a high rate of false positives. Here, we addressed the presence of m6A in CHIKV and DENV RNAs. For this, we combined m6A-seq and the antibody-independent SELECT and nanopore direct RNA sequencing techniques with functional, molecular, and mutagenesis studies. Following this comprehensive analysis, we found no evidence of m6A modification in CHIKV or DENV transcripts. Furthermore, depletion of key components of the host m6A machinery did not affect CHIKV or DENV infection. Moreover, CHIKV or DENV infection had no effect on the m6A machinery’s localization. Our results challenge the prevailing notion that m6A modification is a general feature of cytoplasmic RNA viruses and underscore the importance of validating RNA modifications with orthogonal approaches.</p>