Project description:Transcriptional profiling of RNA-seq data from two Burkholderia species grown under conditions mimicking the cystic fibrosis lung and the soil environment
Project description:Burkholderia vietnamiensis strain G4, representative of a species routinely encountered as a contaminant of industrial product, was exposed to a proprietary preservative agent for 24 hours and gene expression analysed by RNA-seq.
Project description:An important, but rarely performed, test of Koch’s molecular postulates involves evaluating the capacity of candidate virulence genes to confer pathogenicity in otherwise non-virulent species. Unbiased genomic surveys of avirulent natural isolates might reveal rare variants possessing specific virulence features, which might prove useful in testing their functional sufficiency. Using a custom pan-genome array, we analyzed a panel of avirulent Burkholderia thailandensis (Bt) isolates related to Burkholderia pseudomallei (Bp), the causative agent of the often fatal human and animal disease melioidosis. We report the discovery of variant Bt isolates exhibiting isolated acquisition of a capsular polysaccharide biosynthesis gene cluster (BpCPS), long regarded as an critical species-specific virulence factor essential for Bp mammalian virulence. BpCPS-expressing Bt strains exhibited certain pathogen-related phenotypes including resistance to human complement binding, but did not exhibit enhanced virulence when assessed in two different in vivo animal infection models. Phylogenetic analysis revealed that the BpCPS-expressing Bt strains likely reside within an evolutionary subgroup distinct from the majority of previously-described Bt strains. Our findings suggest that BpCPS acquisition alone is unlikely to fully explain the ability of Bp to colonize humans and animals, highlighting the importance of other collaborating factors in the pathogenesis of mammalian melioidosis.