Project description:The cytokine Oncostatin M (OSM) promotes cancer progression by acting as central node for multicellular interactions between cancer cells and surrounding stromal cells. OSM is mainly secreted by myeloid cells and the oncostatin M receptor (OSMR) is expressed by cancer cells and cancer associated fibroblasts (CAFs), among others. To understand the effect of OSM in CAFs, a small and well-annotated Clariom S gene microarray was performed in CAF-173 cells cultured in 3D spheroids and treated with OSM or vehicle (PBS).
Project description:Pancreatic ductal adenocarcinoma (PDAC) has a characteristically dense stroma comprised predominantly of cancer associated fibroblasts (CAFs). CAFs promote tumor growth, metastasis and treatment resistance. We aimed to investigate the molecular changes and functional consequences associated with chemotherapy treatment of PDAC CAFs. Chemoresistant immortalized CAFs (R-CAFs) were generated by continuous incubation in 100nM gemcitabine. Gene expression differences between treatment naïve CAFs (N-CAFs) and R-CAFs were compared by array analysis. Immortalized human pancreatic CAFs were grown for 30 days in either control media or media containing 100nM gemcitabine. RNA was then isolated and hybidized on U133 Plus 2.0 Affymetrix arrays.
Project description:The cytokine Oncostatin M (OSM) promotes cancer progression by acting as central node for multicellular interactions between cancer cells and surrounding stromal cells. OSM is mainly secreted by myeloid cells and the oncostatin M receptor (OSMR) is expressed by cancer cells and cancer associated fibroblasts (CAFs), among others. To understand the effect of OSM in triple negative breast cancer cells, a small and well-annotated Clariom S gene microarray was performed in OSM-overexpressing (MDA-MB-231-hOSM) and control (MDA-MB-231-hC) MDA-MB-231 cells.
Project description:Pancreatic ductal adenocarcinoma (PDAC) has a characteristically dense stroma comprised predominantly of cancer associated fibroblasts (CAFs). CAFs promote tumor growth, metastasis and treatment resistance. We aimed to investigate the molecular changes and functional consequences associated with chemotherapy treatment of PDAC CAFs. Chemoresistant immortalized CAFs (R-CAFs) were generated by continuous incubation in 100nM gemcitabine. Gene expression differences between treatment naïve CAFs (N-CAFs) and R-CAFs were compared by array analysis.
Project description:Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy characterised by a pathologicalfibroinflammatorymicroenvironment. Dichotomous tumour-promoting and -restrictive roles have been ascribed to the tumour microenvironment, however thedisparate effect of individual stromal subsets remains incompletely characterised. Here, we describe how heterocellular OSM-OSMR signalling instructsfibroblast reprogramming,tumourgrowth and metastasis.Macrophage-secreted OSM stimulatesinflammatory gene expression in cancer-associated fibroblasts (CAFs), which in turn induce a pro-tumorigenic environment and engage tumour cellsurvival and migratory signalling pathways. Tumour cells implanted in Osm-deficient (Osm-/-) mice display an epithelial-dominated morphology, reduced tumour growth and did notmetastasise. Moreover, the tumour microenvironment of Osm-/-animals exhibit increased abundance of αSMAposmyofibroblasts and a shift in myeloid and T cell phenotypes, consistent with a more immunogenic environment. Taken together, these data demonstrate how OSM-OSMR signalling coordinates heterocellular interactions to drive a pro-tumorigenic environment in PDA.
Project description:RNA-Sequencing data of patient derived normal fibroblasts (NFs), cancer associated fibroblasts (CAFs) and tumor spheroid samples performed in the context of the characterization of an IL1R1 positive CAF population in CRC tumour samples.
Project description:Cancer associated fibroblasts (CAFs) are highly heterogeneous and different subsets of CAFs may exhibit distinct functions, To identify the molecular signature of distinctive CAFs , we compared mRNA expression profiles of CAFs isolated from tumors in sensitive patients and resistant ones before neo-adjuvant chemotherapy. Compared the CAFs from sensitive samples, those from refractory samples exhibited a distinctive signature.
Project description:To study bi-directional signaling between cancer-associated fibroblasts (CAFs) and cancer cells, we used stable isotope labeling by amino acids in cell culture (SILAC) to determine changes in tyrosine phosphorylation upon direct contact of the two cell types.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that resists current treatments. To test epigenetic therapy against this cancer we used the DNA demethylating drug 5-aza-2’-deoxycytidine (DAC) in a KrasLSL-G12D; p53LSL-R270H/+; Pdx1-cre; Brca1flex2/flex2 (KPC-Brca1) mouse model of aggressive stroma-rich PDAC. In untreated tumors, we found globally decreased 5-methyl-cytosine (5mC) in malignant epithelial cells and in cancer-associated myofibroblasts (CAFs), and increased amounts of 5-hydroxymethyl-cytosine (5HmC) in CAFs, in progression from pancreatic intraepithelial neoplasia (PanIN) to PDAC. DAC further reduced DNA methylation and slowed PDAC progression, markedly extending survival in an early treatment protocol and significantly though transiently inhibiting tumor growth when initiated later, without adverse side effects. Escaping tumors contained areas of sarcomatoid transformation with disappearance of CAFs. Mixing-allografting experiments and proliferation indices showed that DAC efficacy was due to inhibition of both the malignant epithelial cells and the stromal CAFs. Expression profiling and immunohistochemistry highlighted DAC-induction of STAT1 in the tumors, and DAC plus gamma-interferon produced an additive anti-proliferative effect on PDAC cells. DAC induced strong expression of the testis antigen DAZL in CAFs. These data show that DAC is effective against PDAC in vivo and provide a rationale for future studies combining hypomethylating agents with cytokines and immunotherapy. Treatment of a short-term explant culture of cancer-associated fibroblasts (CAFs) from a KPC-Brca1 mouse pancreatic carcinoma, with 2 micromolar 5-aza-dC (decitabine; DAC) for 48 hours. The experiment includes 3 replicate plates untreated and 3 replicates treated.