Project description:The aim of this study was to examine changes in the mRNA transcriptional profile of spermatozoa in Holstein-Friesian bulls. Spermatozoa from bulls divergent for feritlity status were used for this study with 10 High fertility bulls and 10 Low fertility bulls. RNA was extracted and subsequently subjected to miRNAseq analysis. 6 miRNA were identified as differentially expressed in the spermatozoa between bulls of high and low feritlity status.
Project description:The aim of this study was to examine changes in the miRNA transcriptional profile of spermatozoa in Holstein-Friesian bulls. Spermatozoa from bulls divergent for feritlity status were used for this study with 10 High fertility bulls and 10 Low fertility bulls. RNA was extracted and subsequently subjected to miRNAseq analysis. 13 miRNA were identified as differentially expressed in the spermatozoa between bulls of high and low feritlity status.
Project description:Sperm carries information to the presumptive embryo upon fertilization in terms of epigenetic codes and transcripts along with the haploid genome. The epigenetic code includes DNA methylation and Histone modifications. During spermatogenesis the chromatin of sperm undergoes wide level of modifications and histone proteins are replaced by Protamine proteins. But some modified Histone forms still remain and they carry epigenetic codes essential for fertility and embryo development. Through this work we are trying to see the difference between H3K4me2 and H3K27me3 kind of histone modifications in spermatozoa of high and low fertility buffalo bulls.
Project description:The objective of the study was to identify the fertility-associated metabolites in bovine spermatozoa using liquid chromatography-mass spectrometry (LC-MS). Six Holstein Friesian crossbred bulls (three high-fertile and three low-fertile bulls) were the experimental animals. Sperm proteins were isolated and protein-normalized samples were processed for metabolite extraction and subjected to LC-MS/MS analysis. Mass spectrometry data were processed using iMETQ software and metabolites were identified using Human Metabolome DataBase while, Metaboanalyst 4.0 tool was used for statistical and pathway analysis. A total of 3,704 metabolites belonging to various chemical classes were identified in bull spermatozoa. After sorting out exogenous metabolites, 56 metabolites were observed common to both the groups while 44 and 35 metabolites were found unique to high- and low-fertile spermatozoa, respectively. Among the common metabolites, concentrations of 19 metabolites were higher in high-fertile compared to low-fertile spermatozoa (fold change > 1.00). Spermatozoa metabolites with variable importance in projections score of more than 1.5 included hypotaurine, d-cysteine, selenocystine. In addition, metabolites such as spermine and l-cysteine were identified exclusively in high-fertile spermatozoa. Collectively, the present study established the metabolic profile of bovine spermatozoa and identified the metabolomic differences between spermatozoa from high- and low-fertile bulls. Among the sperm metabolites, hypotaurine, selenocysteine, l-malic acid, d-cysteine, and chondroitin 4-sulfate hold the potential to be recognized as fertility-associated metabolites.
Project description:Abstract The water buffalo (Bubalus bubalis) is an indispensable part of the Indian dairy sector and in several instances, the farmers incur economic losses due to failed pregnancy after artificial insemination (AI). One of the key factors for the failure of conception is the use of semen from the bulls of low fertilizing potential and hence, it becomes important to predict the fertility status before performing AI. In this study, the global proteomic profile of high fertile (HF) and low fertile (LF) buffalo bull spermatozoa was established using a high-throughput LC-MS/MS technique. A total of 1385 proteins (≥ 1 high-quality PSM/s, ≥ 1 unique peptides, P < 0.05, FDR < 0.01) were identified out of which, 1002 were common between both the HF and LF groups while 288 and 95 proteins were unique to HF and LF groups respectively. We observed 211 and 342 significantly upregulated (log Fc ≥2) and downregulated in HF (log Fc ≤0.5) spermatozoa (p <0.05). Gene ontology analysis revealed that the fertility associated upregulated proteins were involved in spermatogenesis, sperm motility, acrosome integrity, zona pellucida binding and other associated sperm functions. Besides this, the downregulated proteins were involved in glycolysis, fatty acid degradation and inflammation. Furthermore, fertility related differentially abundant proteins (DAPs) on sperm viz., AKAP3, Sp17 and DLD were validated through Western blotting and immunocytochemistry which was in coherence with the LC-MS/MS data. The DAPs identified in this study may be used as potential protein candidates for predicting fertility in buffaloes. Our findings provide an opportunity in mitigating the economic losses that farmers incur due to male infertility.
Project description:Abstract Buffalo bulls are the backbone of Indian dairy industry, and the quality of semen donating bulls determine the overall production efficiency of buffalo dairy farms. Seminal plasma (SP) of bulls harbor millions of lipid bilayer nanovesicles known as extracellular vesicles (EVs). These EVs carry a heterogenous cargo of essential biomolecules including fertility associated proteins which contribute to the fertilizing potential of spermatozoa. In this study, we explored various parameters of EVs such as size, concentration and the complete proteome profiles of SP EVs from two distinct fertility groups in order to unravel the differentially abundant proteins that potentially affect the overall fertility of bulls. Through Dynamic Light Scattering (DLS) it was found that the purified EVs were present in 7 to 14 size exclusion chromatographic (SEC) fractions with sizes ranging from 145 to 256 nm in the high fertile (HF) and low fertile (LF) bulls. Nanoparticle Tracking Analysis (NTA) confirmed the size of seminal EVs up to 200 nm, and concentrations varying from 2.84 to 6.82 × 1011 and 3.57 to 7.74 × 1011 particles per ml in HF and LF bulls, respectively across all the fractions. No significant difference was observed in the size and concentration of seminal EVs between the HF and LF groups. We identified a total of 1862 and 1807 proteins in seminal EVs of HF and LF bulls, respectively using high throughput LC-MS/MS approach. Out of these total proteins, 1754 proteins were common in both the groups and about 87 proteins were highly abundant in HF group while 1292 were less abundant as compared to LF bulls. Gene ontology (GO) analysis, revealed that the highly abundant proteins in HF group were mainly part of the nucleus and involved in nucleosome assembly along with DNA binding. In addition, highly abundant proteins in EVs of HF group were found to be involved in spermatogenesis, motility, acrosome reaction, capacitation, gamete fusion, and cryotolerance. Two highly abundant proteins of HF EVs, namely protein disulfide-isomerase A4 (PDIA4) and gelsolin (GSN), were successfully immunolocalized on spermatozoa, indicating that these proteins might be transferred to spermatozoa through EVs. The proteins; PDIA4 and GSN are intricately associated with sperm-oocyte fusion and acrosome reaction, respectively, thus they are vital for regulating the fertilizing capacity of sperm. Our evidences clearly support that the protein repertoires in EVs and subsequently their presence on sperm, are strongly associated with sperm functions. Altogether, the current investigation clearly indicates that SPEVs possess crucial protein repertoires which are essential for enhancing the sperm fertilizing capacity.
Project description:Semen quality is extremely important for fertility, and it is easily influenced by environmental factors and can induce subfertility of the next generations. The sperm DNA methylomes of the MZ twin bulls were investigated by WGBS at single-base resolution. We detected DMRs between the twin bulls with divergent sperm qualities. We also conducted transcriptome sequencing for the MZ twin bulls in three replicates. We investigated the relationship between methylation and gene expression.
Project description:The aim of this study was to profile the transcriptome and perform histological analysis of the bovine uterus in response to sperm from high fertility (HF) and low fertility (LF) bulls
Project description:Prediction of male or semen fertility potential remains a persistent challenge that has yet to be fully resolved. This work analyzed several in vitro parameters and proteome of spermatozoa in bulls cataloged as high (HF; n=5) and low field (LF; n=5) fertility after more than a thousand artificial inseminations. Sperm motility was evaluated by Computer-Assisted Sperm Analysis. Sperm viability, mitochondrial membrane potential (MMP), and reactive oxygen species (mROS) of spermatozoa were assessed by flow cytometry. Proteome was evaluated by SWATH-MS procedure. Spermatozoa of HF bulls showed significantly higher total motility than the LF group (41.4% vs. 29.7%). Rates of healthy sperm (live, high MMP, and low mROS) for HF and LF bull groups were 49% and 43%, respectively (p > 0.05). Spermatozoa of HF bulls showed higher presence of differentially abundant proteins (DAPs) related to both energy production (COX7C), mainly OXPHOS pathway, and to the development of structures linked with the motility process (TPPP2, SSMEM1 and SPAG16). Furthermore, we observed that EQTN, together with other DAPs related to the interaction with the oocyte, were overrepresented in HF bull spermatozoa. The biological processes related to protein processing, catabolism, and protein folding were found to be overrepresented in LF bull sperm in which the HSP90AA1 chaperone was identified as the most DAP