Project description:Visium (10x Genomics) spatially resolved transcriptomics data generated from normal and Idiopathic Pulmonary Fibrosis (IPF) lung parenchyma tissues collected from human donors. The fresh-frozen tissues that were analyzed were from four healthy control (HC) subjects and from four IPF patients. For each IPF patient, three different tissues were selected representing areas of mild (“B1”), moderate (“B2\") or severe (“B3”) fibrosis within the same donor, as determined by histological inspection of Hematoxylin and Eosin (H&E)-stained samples. Data from a total of 25 tissue sections, from 16 unique lung tissue blocks. The lung tissues were collected post-mortem (HC donors) or during lung transplant/resection (IPF patients) after obtaining informed consent. The study protocols were approved by the local human research ethics committee (HC: Lund, permit number Dnr 2016/317; IPF: Gothenburg, permit number 1026-15) and the samples are anonymized and cannot/should not be traced back to individual donors.
Project description:This study investigates the interactions between Influenza A virus (IAV) and lung tissue at the single-cell level using the 10x Genomics single-cell RNA sequencing (scRNAseq) platform. Lung tissue samples from a donor with COPD were infected with IAV, and both infected and uninfected samples were analyzed 24 hours post-infection. Single-cell suspensions from multiple infected and uninfected tissue pieces were pooled and analyzed to identify cell types and their responses. A total of 10 cell types were identified, including various airway epithelial cells and immune cells. Apoptotic T cells, characterized by high mitochondrial DNA content, were excluded from gene expression analyses. The presence of viral mRNA was used to indicate viral transcription activity, although distinguishing between intracellular synthesis and extracellular uptake of viral mRNA remains challenging.
Project description:To define the hedgehog-interacting protein (Hhip) expression domain in adult mouse lung, we conduct single-cell RNAseq of the mouse lung using 10X scRNAseq technique.
Project description:Visualization of gene expression in lung tissue was performed using Visium spatial gene expression kits (10x Genomics) following the manufacturer`s protocol. The four capture areas in a 10x Genomics Visium Gene Expression slide consist of 5000 spots with DNA oligos for mRNA capture that have a unique spatial barcode and a unique Molecular Identifier (UMI). Each spot has 55 µm diameter and can therefore capture mRNA from 1 to 10 cells. We report the spatially resolved transcriptome of 3 control lung samples from non-COVID-19-related pneumonia donors and 9 COVID-19 lung samples analyzed with the 10x Visium platform.
Project description:Radiotherapy, a treatment modality received by more than half of all cancer patients, remains one of the most effective approaches to achieve local tumour control. Despite increased accuracy driven by technological advances, healthy tissue injury due to off-target radiation exposure can still occur. In this study, we sought to understand the biological effect of radiation-mediated injury to the lung in the context of cancer metastasis, since we had previously reported that tissue regeneration is a feature of the metastatic microenvironment of this organ. We have exposed healthy mouse lung tissue to radiation prior to the induction of metastasis and observed a strong enhancement of cancer cell growth. Lung tissue was preconditioned into a profoundly tumour-supportive microenvironment governed by enhanced regenerative Notch signalling. Most importantly, we found that locally activated neutrophils were key drivers of these tissue perturbations, significantly increasing the metastatic proficiency of irradiated lung tissue and endowing arriving cancer cells with an augmented stemness phenotype. We show that by preventing neutrophil-dependent Notch activation in the irradiated tissue, we were able to significantly offset the radiation-enhanced metastases. Mechanistically, we identified the release of neutrophil granules as the effectors of the pro-tumorigenic preconditioning of the irradiated lung tissue. These findings not only reveal a novel tumour-supportive function of neutrophils in the context of tissue-injury, but also have important clinical implications by suggesting targeting their activity could maximise the success of radiotherapy for the treatment of cancer.