Project description:To identify genes driving encephalitogenic CD4+ T cell migration into the CNS, we performed a genome-wide CRISPR screen and a subsequent validation screen For the genome-wide CRISPR screen, up to 4 sgRNA per gene and 800 non targeted controls were included, for a total of 87690 individual sgRNAs, and for the validation screen, up to 6 sgRNA per gene and 241 non targeted controls for a total of 12000 individual sgRNAs
Project description:Chronic inflammation is a hallmark of obesity and is linked to the development of numerous diseases. The activation of toll-like receptor 4 (TLR4) by long-chain saturated fatty acids (lcSFAs) is an important process in understanding how obesity initiates inflammation. While experimental evidence supports an important role for TLR4 in obesity-induced inflammation in vivo, via a mechanism thought to involve direct binding to and activation of TLR4 by lcSFAs, several lines of evidence argue against lcSFAs being direct TLR4 agonists. Using multiple orthogonal approaches, we herein provide evidence that while loss-of-function models confirm that TLR4 does, indeed, regulate lcSFA-induced inflammation, TLR4 is not a receptor for lcSFAs. Rather, we show that TLR4-dependent priming alters gene expression, lipid metabolic pathways, and membrane lipid composition, which are necessary for lcSFA-induced inflammation. These results reconcile previous discordant observations and challenge the prevailing view of TLR4's role in initiating obesity-induced inflammation.
Project description:CT26 cells expressing lentiviral Cas9 and sgRNAs targeting either control or Gna13 were transplanted into immunocompetent BALB/c mice. Tumors were harvested and processed for RNA-seq
Project description:To gain insights into how EBV latency is maintained, we performed a human genome-wide CRISPR screen in latently EBV-infected Burkitt lymphoma B-cells. Our analyses identified a network of host factors that repress EBV lytic reactivation, centered on the transcription factor MYC and including cohesins, FACT, STAGA and Mediator. RNAseq was used to identify host and viral transcriptome changes in P3HR-1 Burkitt lymphoma cells expressing control, smc1a, supt16h, med12, or tada2b sgRNAs. RNAseq was used to identify host and viral transcriptome changes in Akata EBV+ burkitt lymphoma cells expressing control or myc sgRNAs.
Project description:CRISPRz (http://research.nhgri.nih.gov/CRISPRz/) is a database of CRISPR/Cas9 target sequences that have been experimentally validated in zebrafish. Programmable RNA-guided CRISPR/Cas9 has recently emerged as a simple and efficient genome editing method in various cell types and organisms, including zebrafish. Because the technique is so easy and efficient in zebrafish, the most valuable asset is no longer a mutated fish (which has distribution challenges), but rather a CRISPR/Cas9 target sequence to the gene confirmed to have high mutagenic efficiency. With a highly active CRISPR target, a mutant fish can be quickly replicated in any genetic background anywhere in the world. However, sgRNA's vary widely in their activity and models for predicting target activity are imperfect. Thus, it is very useful to collect in one place validated CRISPR target sequences with their relative mutagenic activities. A researcher could then select a target of interest in the database with an expected activity. Here, we report the development of CRISPRz, a database of validated zebrafish CRISPR target sites collected from published sources, as well as from our own in-house large-scale mutagenesis project. CRISPRz can be searched using multiple inputs such as ZFIN IDs, accession number, UniGene ID, or gene symbols from zebrafish, human and mouse.
Project description:Toll like receptor 4 (TLR4), an innate immunity gene, is involved in responses to several pulmonary agonists including endotoxin (LPS; Poltorak et al.,1998), ozone (O3 ,Kleeberger et. al., 2001), Pseudomonas aeruginosa (Faure et al, 2004), and hyperoxia (Zhang et al, 2005). TLR4 appears to partially mediate the response to LPS- and O3-induced lung injury, however, TLR4 is protective for prevention of injury in Pseudomonas aeruginosa infection and against acute lung injury (hyperoxia). The mechanism behind this protection is unclear. We previously demonstrated that TLR4 was also protective against BHT-induced chronic inflammation and tumor promotion (Bauer et al, 2005). C.C3H-Tlr4Lps-d (BALBLps-d) mice, congenic for a 10 cM region of C3H/HeJ chromosome 4 that contains Tlr4 (Vogel et al, 1994), have a missence mutation that renders TLR4 dysfunctional. The Tlr4 mutation likely abrogates signaling by disrupting a direct point of contact with other signaling molecules (Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4(7):499-511.). Bronchoalveolar lavage fluid (BALF) alveolar macrophages, lymphocytes, and total protein content were significantly elevated in BALBLps-d mice compared to BALB/c (BALB; Tlr4 sufficient) mice following chronic BHT (Bauer et al., 2005). BALBLps-d mice also had a significant increase in tumor multiplicity (60%) over that of BALB mice in response to an MCA/BHT tumor promotion protocol. While this was the first model to demonstrate a protective role for TLR4 in chronic lung inflammation and tumorigenesis, the downstream mechanism regulating this protective response remains unknown. Using Affymetrix microarray analysis followed by GeneSpring and Ingenuity pathway analyses, we herein identified known and novel downstream pathways and their interactions that may be involved in the protective mechanism elicited by TLR4. We therefore hypothesize that these pathways and interactions amongst the genes identified during the tumor promotion/chronic inflammation stage are in part influencing the differential strain response observed during tumorigenesis. Keywords: time course, tumor study Protocol 1 - 3 biological replicates after chronic dosing in each mouse strain Protocol 2 - multiple replicates after MCA/BHT tumor progression model used