Project description:We report a method for precisely stenciling the structure of individual chromatin fibers onto their composite DNA templates using non-specific DNA N6-adenine methyltransferases. Single-molecule long-read sequencing using PacBio of these chromatin stencils enables nucleotide-resolution readout of the primary architecture of multi-kilobase chromatin fibers (Fiber-seq).
Project description:We report a method for precisely stenciling the structure of individual chromatin fibers onto their composite DNA templates using non-specific DNA N6-adenine methyltransferases. Single-molecule long-read sequencing using PacBio of these chromatin stencils enables nucleotide-resolution readout of the primary architecture of multi-kilobase chromatin fibers (Fiber-seq).
Project description:We report a method for precisely stenciling the structure of individual chromatin fibers onto their composite DNA templates using non-specific DNA N6-adenine methyltransferases. Single-molecule long-read sequencing using PacBio of these chromatin stencils enables nucleotide-resolution readout of the primary architecture of multi-kilobase chromatin fibers (Fiber-seq).
Project description:We report a method for precisely stenciling the structure of individual chromatin fibers onto their composite DNA templates using non-specific DNA N6-adenine methyltransferases. Single-molecule long-read sequencing using PacBio of these chromatin stencils enables nucleotide-resolution readout of the primary architecture of multi-kilobase chromatin fibers (Fiber-seq).
Project description:We report a method for precisely stenciling the structure of individual chromatin fibers onto their composite DNA templates using non-specific DNA N6-adenine methyltransferases. Single-molecule long-read sequencing using PacBio of these chromatin stencils enables nucleotide-resolution readout of the primary architecture of multi-kilobase chromatin fibers (Fiber-seq).
Project description:We present a long-read, single-molecule mapping technology that generates hybrid genetic/epigenetic profiles of native chromosomal DNA. The genome-wide distribution of 5-hmC in human peripheral blood cells correlates well with 5-hmC DNA immunoprecipitation (hMeDIP) sequencing. However, the long single-molecule read-length of 100 kbp-1 Mbp produces 5-hmC profiles across variable genomic regions that failed to show up in the sequencing data. In addition, optical 5-hmC mapping shows a strong correlation between the 5-hmC density in gene bodies and the corresponding level of gene expression.
2018-06-08 | GSE115454 | GEO
Project description:Rapid detection of myeloid neoplasm fusions using single-molecule long-read sequencing
| PRJNA999047 | ENA
Project description:Single-molecule long-read sequencing of ramie transcriptome