Project description:The mucosal surfaces of fish serve as the first-line of defense against the myriad of aquatic pathogens present in the aquatic environment. The immune repertoire functioning at these interfaces is still poorly understood. The skin, in particular, must process signals from several fronts, sensing and integrating environmental, nutritional, social, and health cues. Pathogen invasion can disrupt this delicate homeostasis with profound impacts on signaling throughout the organism. Here, we investigated the transcriptional effects of virulent A. hydrophila infection in channel catfish skin, Ictalurus punctatus. We utilized an 8X60K Agilent microarray to examine gene expression profiles at critical early timepoints following challenge—2 h, 8 h, and 12 h. Expression of a total of 2,168 unique genes was significantly perturbed during at least one timepoint. We observed dysregulation of a number of genes involved in antioxidant, cytoskeletal, immune, junctional, and nervous system pathways. In particular, A. hydrophila infection rapidly altered a number potentially critical lectins, chemokines, interleukins, and other mucosal factors in a manner predicted to enhance its ability to adhere and invade the catfish host.
Project description:Aeromonas hydrophila is one of the most important pathogenic bacteria for aquaculture animals, such as fish and crustaceans. In this study, we isolated a pathogenic bacterial strain, named Y-SC01, from dark sleeper (Odontobutis potamophila) with rotten gills; the strain was identified as A. hydrophila by physiological and biochemical tests. Furthermore, we sequenced its genome and assembled a chromosome of 4.72 Mb with a GC content of 58.55%, and we report major findings based on the genomic analysis.
Project description:The bacterium Aeromonas veronii is a co-pathogenic species that can negatively impact the health of both humans and aquatic animals. In this study, we used single-cell transcriptome analysis (scRNA-seq) to investigate the effects of infection with A. veronii on head kidney cells and the regulation of gene expression in the dark sleeper (Odontobutis potamophila). scRNA-seq was used to assess the effects of infection with A. veronii in O. potamophila B cells, endothelial cells, macrophages, and granulocytes, and differential enrichment analysis of gene expression in B cells and granulocytes was performed. The analyses revealed a significant increase in neutrophils and decrease in eosinophils in granulocytes infected with A. veronii. Activation of neutrophils enhanced ribosome biogenesis by up-regulating the expression of rps12 and rpl12 to fight against invading pathogens. Crucial pro-inflammatory mediators il1b, ighv1-4, and the major histocompatibility class II genes mhc2a and mhc2dab, which are involved in virulence processes, were up-regulated, suggesting that A. veronii activates an immune response that presents antigens and activates immunoglobulin receptors in B cells. These cellular immune responses triggered by infection with A. veronii enriched the available scRNA-seq data for teleosts, and these results are important for understanding the evolution of cellular immune defense and functional differentiation of head kidney cells.
Project description:Fish skin is a critical regulatory organ, serving not only as a physical barrier to pathogen entry, but also as a sophisticated integrator of aquatic environmental, social and nutritional cues through roles in immunity, osmoregulation, and endocrine signaling. Integral to the complexity of teleost skin is the mucus layer secreted by epidermal goblet cells. Pathogen invasion can disrupt this delicate homeostasis with profound impacts on signaling throughout the organism. Here, we investigated the transcriptional effects of virulent A. hydrophila infection in blue catfish skin, Ictalurus furcatus. We utilized an 8X60K Agilent microarray to examine gene expression profiles at critical early timepoints following challenge—2 h, 12 h, and 24 h. Expression of a total of 1,155 unique genes was significantly perturbed during at least one timepoint. We observed dysregulation of a number of genes involved in including antioxidant/apoptosis, cytoskeletal rearrangement, immune response, junctional/adhesion, and proteases. In particular, A. hydrophila infection rapidly altered a number potentially critical lectins, chemokines, interleukins, and other mucosal factors in a manner predicted to enhance its ability to adhere and invade the catfish host.
Project description:Fish skin is a critical regulatory organ, serving not only as a physical barrier to pathogen entry, but also as a sophisticated integrator of aquatic environmental, social and nutritional cues through roles in immunity, osmoregulation, and endocrine signaling. Integral to the complexity of teleost skin is the mucus layer secreted by epidermal goblet cells. Pathogen invasion can disrupt this delicate homeostasis with profound impacts on signaling throughout the organism. Here, we investigated the transcriptional effects of virulent A. hydrophila infection in blue catfish skin, Ictalurus furcatus. We utilized an 8X60K Agilent microarray to examine gene expression profiles at critical early timepoints following challenge—2 h, 12 h, and 24 h. Expression of a total of 1,155 unique genes was significantly perturbed during at least one timepoint. We observed dysregulation of a number of genes involved in including antioxidant/apoptosis, cytoskeletal rearrangement, immune response, junctional/adhesion, and proteases. In particular, A. hydrophila infection rapidly altered a number potentially critical lectins, chemokines, interleukins, and other mucosal factors in a manner predicted to enhance its ability to adhere and invade the catfish host. Two-condition experiment, control vs. infected skin. Biological replicates: 3 control replicates, 3 infected replicates.3 timepoints
Project description:We report the first complete mitochondrial genome of Odontobutis obscurus, which consists of 17,038 bp harboring 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region (D-loop). The overall base composition of the complete genome is A (30.63%), C (28.72%), T (25.70%), G (14.95%). The complete mitogenome of Odontobutis obscurus, most closely related to congeners in the Bayesian inference and maximum likelihood tree, provides a better understanding of the phylogeny of the genus Odontobutis.
Project description:The effect of rainbow trout plasma on the conditionally pathogenic gram-negative bacterium A. hydrophila, the causative agent of septicemia, has been studied. It has been shown that the native blood plasma of conditionally healthy cultured trout does not have an antimicrobial effect on bacteria. However, the high-molecular fraction of plasma of trout conditionally immunized with F. psychrophilum had an antimicrobial effect on A. hydrophila. It has been shown that the plasma of supposedly immunized trout prevents the reproduction of bacteria and disrupts their morphology. Using HPLC-MS/MS, we investigated potentially immune plasma proteins that adhere to the surface of bacteria. Proteins that remained on the surface of bacteria after a series of washings were studied. The results of the research may be useful for studying immune proteins of teleost fish and other vertebrates recognizing PAMPs of Gram-negative bacteria and for the cross-resistance of trout between phylogenetically unrelated bacterial species.
Project description:Mesophilic Aeromonas spp. constitutively express a single polar flagellum that helps the bacteria move to more favorable environments and is an important virulence and colonization factor. Certain strains can also produce multiple lateral flagella in semisolid media or over surfaces. We have previously reported 16 genes (flgN to flgL) that constitute region 1 of the Aeromonas hydrophila AH-3 polar flagellum biogenesis gene clusters. We identified 39 new polar flagellum genes distributed in four noncontiguous chromosome regions (regions 2 to 5). Region 2 contained six genes (flaA to maf-1), including a modification accessory factor gene (maf-1) that has not been previously reported and is thought to be involved in glycosylation of polar flagellum filament. Region 3 contained 29 genes (fliE to orf29), most of which are involved in flagellum basal body formation and chemotaxis. Region 4 contained a single gene involved in the motor stator formation (motX), and region 5 contained the three master regulatory genes for the A. hydrophila polar flagella (flrA to flrC). Mutations in the flaH, maf-1, fliM, flhA, fliA, and flrC genes, as well as the double mutant flaA flaB, all caused loss of polar flagella and reduction in adherence and biofilm formation. A defined mutation in the pomB stator gene did not affect polar flagellum motility, in contrast to the motX mutant, which was unable to swim even though it expressed a polar flagellum. Mutations in all of these genes did not affect lateral flagellum synthesis or swarming motility, showing that both A. hydrophila flagellum systems are entirely distinct.