Project description:The genetic structure of the indigenous hunter-gatherer peoples of Southern Africa, the oldest known lineage of modern man, holds an important key to understanding humanity's early history. Previously sequenced human genomes have been limited to recently diverged populations. Here we present the first complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and of a Bantu from Southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, and 13,146 novel amino-acid variants. These data allow genetic relationships among Southern African foragers and neighboring agriculturalists to be traced more accurately than was previously possible. Adding the described variants to current databases will facilitate inclusion of Southern Africans in medical research efforts.
2010-02-18 | GSE19048 | GEO
Project description:Mezquital Valley agricultural soils irrigation chronosequence
Project description:The shift from a hunter-gatherer (HG) to an agricultural (AG) mode of subsistence is believed to have been associated with profound changes in the burden and diversity of pathogens across human populations. Yet, the extent to which the advent of agriculture impacted the evolution of the human immune system remains unknown. Here we present a comparative study of variation in the transcriptional responses of peripheral blood mononuclear cells (PBMCs) to bacterial and viral stimuli between the Batwa, a rainforest hunter-gatherer, and the Bakiga, an agriculturalist population from Central Africa. We observed increased divergence between hunter-gatherers and farmers in the transcriptional response to viruses compared to that for bacterial stimuli. We demonstrate that a significant fraction of these transcriptional differences are under genetic control, and we show that positive natural selection has helped to shape population differences in immune regulation. Unexpectedly, we found stronger signatures of recent natural selection in the rainforest hunter-gatherers, which argues against the popularized notion that shifts in pathogen exposure due to the advent of agriculture imposed radically heightened selective pressures in agriculturalist populations.
Project description:We utilized ChIP Seq to examine the the genomic localization of the increase in H3K9 trimethylation we had previously observed in the hippocampus as a consequence of acute restraint stress in rats (Hunter et. al PNAS 2009).
Project description:Crosslinking immunoprecipitation and sequencing was used to characterize nucleocapsid-RNA interactions in Rift Valley fever virus infection. This data set includes illumina HiSeq paired-end reads of Rift Valley fever virus infected HEK293 cells. The sequencing libraries were generated from nucleocapsid-bound RNAs.
Project description:Rift Valley fever virus causes severe disease in humans and livestock and in some cases can be fatal. There is concern about the use of Rift Valley fever virus as a bioweapon since it can be transmitted through the air, and there are no vaccines or antiviral treatments. Airborne transmission of the virus causes severe inflammation of the brain, yet little is known about the immune response against the virus in this organ. Here, we investigated the immune response in the brain to Rift Valley fever virus following intranasal infection. We determined that microglia, the resident immune cells of the brain, initiate a robust response to Rift Valley fever virus infection and identified a key immune pathway that is critical for the ability of microglia to respond to infection. When this immune pathway is rendered non-functional, mice have a dysregulated response to infection in the brain.
Project description:We utilized ChIP Seq to examine the the genomic localization of the increase in H3K9 trimethylation we had previously observed in the hippocampus as a consequence of acute restraint stress in rats (Hunter et. al PNAS 2009). Rats were restrained for 30 minutes, allowed to recover for 1 hour and then sacrificed and their hippocampi extracted and processed for H3K9me3 ChIP using the Cell Signalling H3K9me3 antibody.