Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:Timecourse of cAMP-induced decidualization of endometrial stromal cells.<br><br>Note that files GSM5962.txt and GSM5965.txt as imported from GEO are identical.
Project description:Here we report the gene expression profile of in vitro cultured human endometrial stromal cells treated with siRNA targeting FOXO1 piror to eutherian differentiation media exposure. The eutherian differentiation media contains cyclic AMP (cAMP) analogue 8-Br-cAMP and the progesterone (P4) analogue medroxyprogesterone acetate (MPA).
Project description:H9 Pluripotent Stem Cells (PSC) were differentiated to Endometrial Stromal Fibroblasts (PSC-ESF) in monolayer over the course of 12 days. Gene expression was measured at day 0, day 4, day 8, and day 12 of differentiation. At day 12, PSC-ESF were dissociated from monolayer culture for co-culture with endometrial epithelial organoids established from term decidua. Gene expression was also measured after 26 days in co-culture (Cycle 1, vehicle or cAMP/progesterone/estradiol) and after 52 days in co-culture (Cycle 2, vehicle or cAMP/progesterone/estradiol)
Project description:Our previous studies have shown that bone morphogenetic protein 2 (BMP2), a morphogen belonging to the TGFM-NM-2 superfamily, is markedly induced in human primary endometrial stromal cells (HESC) as they undergo differentiation in response to steroid hormones and cAMP. WNT4 is a downstream target of BMP2 regulation in these cells. To identify the common downstream targets of BMP2 and WNT4 in human endometrial stromal cells, we performed gene expression profling of human ensometrial stromal cell transduced with BMP2 or WNT4 adenovirus. Gene expression profiling revealed that FOXO1, a forkhead family transcription factor and a known regulator of HESC differentiation, is a common downstream mediator of both BMP2 and WNT4 signaling. These studies uncovered a linear pathway involving BMP2, WNT4, and FOXO1 that operates in human endometrium to critically control decidualization. Human endometrial stromal cells were transduced with recombinant adenovirus expressing BMP2, WNT4, or a negative control GFP at MOI 50:1 in 2 ml of culture medium. After transduction for 24 h, the viral particles were removed and the cells were treated with E+P for 3 days to induce decidualization (n=3 for each treatment), pooled total RNA from these cells was then hybridized to high density affymetrix microarrays according to the Affymetrix protocol (Human Genome HG-U133 A2.0 Array) .
Project description:We developed an in vitro model in which primary human endometrial stromal cells (HESCs) were induced to differentiate through treatment with MPA and 8-Br-cAMP. SiRNA-mediated knockdown of METTL3 was performed on HESCs, 6 h prior to treatment of 8-Br-cAMP and MPA.