Project description:Chronic diseases arise when pathophysiological processes achieve a steady state by self-reinforcing. Here, we explored the possibility of a self-reinforcement state in a common condition, chronic constipation, where alterations of the gut microbiota have been reported. The functional impact of the microbiota shifts on host physiology remains unclear, however we hypothesized that microbial communities adapted to slow gastrointestinal transit affect host functions in a way that reinforces altered transit, thereby maintaining the advantage for microbial self-selection. To test this, we examined the impact of pharmacologically (loperamide)-induced constipation (PIC) on the structural and functional profile of altered gut microbiota. PIC promoted changes in the gut microbiome, characterized by decreased representation of butyrate-producing Clostridiales, decreased cecal butyrate concentration and altered metabolic profiles of gut microbiota. PIC-associated gut microbiota also impacted colonic gene expression, suggesting this might be a basis for decreased gastrointestinal (GI) motor function. Introduction of PIC-associated cecal microbiota into germ-free (GF) mice significantly decreased GI transit time. Our findings therefore support the concept that chronic diseases like constipation are caused by disease-associated steady states, in this case, caused by reciprocating reinforcement of pathophysiological factors in host-microbe interactions. We used microarrays to detail the global gene expression profile in the proximal colon smooth muscle tissues of germ-free, conventionalized, or specific pathogen free mouse C57Bl/6 female and male specific pathogen free (SPF) mice were bred and housed in the animal care facility at the University of Chicago. Mice of 8–10 weeks of age were treated with 0.1% loperamide in the drinking water for 7 days. Age matched, germ-free (GF) C57Bl/6 mice were gavaged orally with cecal luminal contents harvested from control or loperamide-treated C57Bl/6 donor mice. Recipient mice were sacrificed 4 weeks post-colonization.
Project description:Metformin is the therapy of choice for treating type 2 diabetes and is currently repurposed for a wide range of diseases including aging. Recent evidence implicates the gut microbiota as a site of metformin action. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed C. elegans RNAseq to investigate the role of the metformin sensitive OP50 and metformin resistant OP50-MR E. coli microbiota in the drug effects on the host. Our data suggest an evolutionarily conserved bacterial mediation of metformin effects on host lipid metabolism and lifespan.
Project description:We compared the microbiota of paired mouse caecal contents and faeces by applying a multi-omic approach, including 16S rDNA sequencing, shotgun metagenomics, and shotgun metaproteomics. The aim of the study was to verify whether faecal samples are a reliable proxy for the mouse colonic luminal microbiota, as well as to identify changes in taxonomy and functional activity between caecal and faecal microbial communities, which have to be carefully considered when using stool as sample for mouse gut microbiota investigations.
Project description:Eriocitrin, found in lemon fruit, has shown a wide range of biological properties. Herein, to evaluate the intestinal metabolic profile of eriocitrin in colon, the flavonoids in mice colon contents were identified by ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS), and a total of 136 flavonoids were found, including eriocitrin and its six metabolites (eriodictyol, homoeriodictyol, hesperetin, eriodictyol-3'-O-glucoside, hesperetin-7-O-glucoside and eriodictyol-7-O-(6''-O-galloyl) glucoside). Mice colon contents were used for 16S rDNA gene sequencing and gas chromatography-mass (GC-MS). Resultu showed that eriocitrin significantly alters the beta diversity of the gut microbiota, the probiotics such as Lachnospiraceae_UCG_006 were significantly enriched, and the production of butyrate, valerate and hexanoate in the colon pool of short-chain fatty acids (SCFAs) were significant increased. The spearman's association analysis performed some intestinal bacteria may be involved in the metabolism of eriocitrin. Collectively, our results preliminarily suggesting the metabolism of eriocitrin in the gut, demonstrate alterations of eriocitrin on gut microbiota, which warrants further investigation to determine its potential use in food and biomedical applications.
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.