Project description:N6-methyladenosine (m6A) is the most abundant post-transcriptional methylation of mature mRNA and plays a crucial regulatory role in various biological functions, involving development and cancer progression. m6A is deposited by methyltransferase complex composed of METTL3 and METTL14 cotranscriptionally, and removed by demethylase FTO or ALKBH5. m6A is highly enriched within the 3’ UTRs and in the vicinity of the stop codon of mature mRNA. However, the mechanism that causes this distribution pattern is still enigmatic. Here, we show that EJC packages mRNAs to shape mRNA m6A landscape. We first tested the possibility that demethylase removes m6A during spicing and found that ALKBH5 depletion had a minor effect on m6A levels. Thus, we ruled out the demethylation model. We then hypothesized that splicing factors inhibit the methylation process of internal exons, but not the 3’ UTR. Knockdown of EIF4A3, a core component of the exon junction complex, significantly increased m6A levels in mature mRNAs. The hypermethylated sites are enriched in short internal exons. Furthermore, EIF4A3 depletion upregulates METTL3 binding affinity to mRNA to deposit m6As. In conclusion, Our results demonstrate that EIF4A3 blocks METTL3 binding and methylating internal short exons of mRNA. These findings shed light on the fact that RNA packaging formed during splicing acts as a regulator that shapes mRNA modifications.
Project description:N6-methyladenosine (m6A), a widespread destabilizing mark on mRNA, is non-uniformly distributed across the transcriptome, yet the basis for its selective deposition is unknown. Here, we uncover that m6A deposition is not selective. Instead, m6A distribution is exclusion-based: m6A-consensus harboring sites are methylated by default, unless they are within a window of up to ~200 nt from an exon-intron junction. A simple model which we extensively validate, relying exclusively on presence of m6A motifs and exon-intron architecture allows high accuracy recapitulation of experimentally-measured m6A profiles and of the vast majority of m6A hallmarks. Finally, we provide strong evidence that this exclusion is mediated by the exon-junction complex. Our findings establish a mechanism by which the memory of nuclear RNA splicing is covalently etched on an mRNA in the form of m6A, and determines its cytoplasmic stability, with broad implications on the regulation, function, and evolution of the exon-junction complex and m6A.
Project description:N6-methyladenosine (m6A) is a widespread reversible chemical modification of RNAs, implicated in many aspects of RNA metabolism. Little quantitative information exists as to either how many transcript copies of particular genes are m6A modified (âm6A levelsâ), or the relationship of m6A modification(s) to alternative RNA isoforms. To deconvolute the m6A epitranscriptome, we developed m6A level and isoform-characterization sequencing (m6A-LAIC-seq). We found that cells exhibit a broad range of non-stoichiometric m6A levels with cell type specificity. At the level of isoform characterization, we discovered widespread differences in use of tandem alternative polyadenylation (APA) sites by methylated and nonmethylated transcript isoforms of individual genes. Strikingly, there is a strong bias for methylated transcripts to be coupled with proximal APA sites, resulting in shortened 3â untranslated regions (3â-UTRs), while nonmethylated transcript isoforms tend to use distal APA sites. m6A-LAIC-seq yields a new perspective on transcriptome complexity and links APA usage to m6A modifications. m6A-LAIC-seq of H1-ESC and GM12878 cell lines, each cell line has two replicates
Project description:N6–methyladenosine (m6A) is the most abundant mRNA modification and plays crucial roles in diverse physiological processes. Utilizing a Massively Parallel Assay for m6A (MPm6A), we discover that m6A specificity is globally regulated by “suppressors” that prevent m6A deposition in unmethylated transcriptome regions. We identify Exon Junction Complexes (EJCs) as m6A suppressors that protect exon junction-proximal RNA within coding sequences from methylation and regulate mRNA stability through m6A suppression. EJC suppression of m6A underlies multiple global characteristics of mRNA m6A specificity, with the local range of EJC protection sufficient to suppress m6A deposition in average-length internal exons, but not in long internal and terminal exons. EJC-suppressed methylation sites co-localize with EJC-suppressed splice sites, suggesting that exon architecture broadly determines local mRNA accessibility to regulatory complexes.
Project description:We performed m6A-RIPs in Ascl1-induced neurons (iNeurons) to investigate the neuronal m6A epitranscriptome. Immunoprecipitation was done twice using two different antibodies, acquired from Abcam and Synaptic Systems (SySy), allowing for a more robust detection of m6A modification marks. Additionally, RIP-seq was performed separately with intact and fragmented RNA. The former approach allowed to identify proportions of m6A-modified transcripts among the total number, while the latter approach provided the information to identify genomic coordinates of m6A peaks.
Project description:Here we systematically analyze the modification pattern of m6A mRNA in adenocarcinoma at the esophagogastric junction.In adenocarcinoma of esophagogastric junction samples, a total of 4775 new m6A peaks appeared, and 3054 peaks disappeared. The unique m6A-related genes in adenocarcinoma of esophagogastric junction are related to cancer-related pathways. There are hypermethylated or hypomethylated m6A peaks in AEG in differentially expressed mRNA transcripts. This study preliminarily constructed the first m6A full transcriptome map of human adenocarcinoma of esophagogastric junction. This has a guiding role in revealing the mechanism of m6A-mediated gene expression regulation.
Project description:We report an epitranscriptome-wide mapping of m6A-modified circRNAs (m6A-circRNA) in oral squamous cell carcinoma (OSCC). Utilizing the data of m6A-circRNAs epitranscriptomic microarray analysis, we found that m6A-circRNAs exhibited their particular modification style in OSCC. anti-m6A antibody Synaptic Systems, cat. No. 202003)