Project description:Aster yellows phytoplasma strain Hyd35 (16SrI-B) in micropropagated periwinkle shoots in collection was used to produce infected plants in pots that were separated according to the diverse symptomatology i.e. phyllody and witches’ broom. Small RNA high-throughput sequencing (HTS) was then used to determine the small RNA pattern of these plants. Bioinformatics analysis revealed the presence of expression changes of different miRNA classes and the presence of phytoplasma derived small RNAs. These results could complement previous studies and serve as a starting point for small RNA omics in phytoplasma research
Project description:Transcriptional profiling of phytoplasma grown in plant (Chrysanthemum coronarium) and grown in insect (Macrosteles striifrons). Two-condition experiment, phytoplasma-infected plant and phytoplasma-infected insect. Biological replicates: 4 phytoplasma-infected plants and 4 phytoplasma-infected insects, independently grown and harvested. One replicate per array.
Project description:Transcriptional profiling of phytoplasma grown in plant (Chrysanthemum coronarium) and grown in insect (Macrosteles striifrons). Two-condition experiment, phytoplasma-infected plant and phytoplasma-infected insect. Biological replicates: 6 phytoplasma-infected plants and 6 phytoplasma-infected insects, independently grown and harvested. One replicate per array.
Project description:Background: Witches’ broom disease of Mexican lime (Citrus aurantifolia L.), which is caused by the phytoplasma “Candidatus Phytoplasma aurantifolia”, is a devastating disease that results in significant economic losses. Plants adapt to abiotic stresses by regulating gene expression at the transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) are a recently identified family of molecules that regulate plant responses to environmental stresses through post-transcriptional gene silencing. Methods: Using a high-throughput approach to sequence small RNAs, we compared the expression profiles of miRNAs in healthy Mexican lime trees and in plants infected with “Ca. Phytoplasma aurantifolia”. Results: Our results demonstrated the involvement of different miRNAs in the response of Mexican lime trees to infection by “Ca. Phytoplasma aurantifolia”. We identified miRNA families that are expressed differentially upon infection with phytoplasmas. Most of the miRNAs had variants with small sequence variations (isomiRs), which are expressed differentially in response to pathogen infection. Conclusions: It is likely that the miRNAs that are expressed differentially in healthy and phytoplasma-infected Mexican lime trees are involved in coordinating the regulation of hormonal, nutritional, and stress signalling pathways, and the complex interactions between them. Future research to elucidate the roles of these miRNAs should improve our understanding of the level of diversity of specific plant responses to phytoplasmas.
Project description:This SuperSeries is composed of the following subset Series: GSE29274: phytoplasma in plants vs. phytoplasma in insects (single hyb expts) GSE30302: phytoplasma in plants vs. phytoplasma in insects (co-hybridizations) Refer to individual Series
Project description:Transcriptional profiling of Vitis vinifera cv. Chardonnay healthy vs. Phytoplasma-infected plants (Bois noir phytoplasma). Study was conducted on grapevine plants grown in the same vineyard (leaf midribs were sampled). Keywords: disease state analysis