Project description:Single-cell multi-omic datasets, in which multiple molecular modalities are profiled within the same cell, provide a unique opportunity to discover the interplay between cellular epigenomic and transcriptomic changes. To realize this potential, we developed MultiVelo, a mechanistic model of gene expression that extends the popular RNA velocity framework by incorporating epigenomic data. MultiVelo uses a probabilistic latent variable model to estimate the switch time and rate parameters of gene regulation, providing a quantitative summary of the temporal relationship between epigenomic and transcriptomic changes. Fitting MultiVelo on single-cell multi-omic datasets revealed two distinct mechanisms of regulation by chromatin accessibility, quantified the degree of concordance or discordance between transcriptomic and epigenomic states within each cell, and inferred the lengths of time lags between transcriptomic and epigenomic changes.
Project description:This study utilizes multi-omic biological data to perform deep immunophenotyping on the major immune cell classes in COVID-19 patients. 10X Genomics Chromium Single Cell Kits were used with Biolegend TotalSeq-C human antibodies to gather single-cell transcriptomic, surface protein, and TCR/BCR sequence information from 254 COVID-19 blood draws (a draw near diagnosis (-BL) and a draw a few days later (-AC)) and 16 healthy donors.
Project description:This SuperSeries is composed of the SubSeries listed below. Dynamic changes of three-dimensional chromatin architecture during T cell differentiation.
Project description:We used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features that are critical for macrophage activation. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of activation. Metabolites well-known to be associated with immunoactivation (glucose and arginine) and immunosuppression (tryptophan and vitamin D3) were among the most critical effectors. Intracellular metabolic mechanisms were assessed, identifying a suppressive role for de-novo nucleotide synthesis. Finally, underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Two condition (flagellin and LPS) time course exposure of RAW 264.7 cell line at 1, 2, 4, and 24 hours. Two replicates for each condition and time point. All conditions compared to a pool of untreated cells at a 0 hour time point.