Project description:Objectives: To determine the transcripts that are differentially expressed in a hfq mutant. Hfq is an RNA chaperone that mediates many interactions between regultory RNAs and their mRNA targets. Analysis of the transcriptomes of the Pasteurella multocida wild-type strain and the Pasteurella multocida hfq mutant will allow for identification of genes controlled by hfq and the sRNAs with which it interacts. Methods: RNA sequencing was employed to determine the transcriptomes of a wild-type Pasteurella multocida strain and a hfq mutant strain. Comparison of these two transcriptomes allows for determination of differentially expressed genes and therefore those genes controlled by Hfq and sRNAs with which it interacts.
Project description:Objectives: To determine the transcripts that are differentially expressed in a hfq mutant. Hfq is an RNA chaperone that mediates many interactions between regultory RNAs and their mRNA targets. Analysis of the transcriptomes of the Pasteurella multocida wild-type strain and the Pasteurella multocida hfq mutant will allow for identification of genes controlled by hfq and the sRNAs with which it interacts.
Project description:Long Read Genome Sequence Assemblies of Pasteurella multocida and Mannheimia haemolytica isolates from BRD-affected feedlots in Australia
Project description:The Gram-negative pathogen Pasteurella multocida is responsible for many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. One mechanism by which bacteria regulate transcript abundance and protein production is riboregulation, which involves the interaction of a small RNA (sRNA) with a target mRNA to alter transcript stability and/or translational efficiency. This interaction often requires stabilization by a ribosome binding protein such as ProQ or Hfq. In E. coli and other species, ProQ has been shown to play a critical role in stabilizing sRNA-mRNA interactions and preferentially binds to 3’ stem-loop regions of the mRNA transcripts, characteristic of intrinsic transcriptional terminators. The aim of this study was to determine the role of ProQ riboregulation in P. multocida and identify the RNA regions to which it binds. We assessed differentially expressed transcripts in a proQ mutant and identified sites of direct ProQ-RNA interaction using in vivo UV-crosslinking and analysis of cDNA (CRAC). These analyses demonstrated that ProQ binds to, and stabilises, ProQ-dependant sRNAs and transfer RNAs in P. multocida via adenosine enriched, highly structured sequences. The binding of ProQ to two RNA molecules was characterised and showed that ProQ bound within the coding sequence of the uncharacterized PmVP161_1121 and within the 3’ region of the sRNA Prrc13.
Project description:Pasteurella multocida is a Gram-negative capsulated bacterium responsible for a range of diseases that cause severe morbidity and mortality in livestock animals. The hyaluronic acid (HA) capsule produced by P. multocida serogroup A strains is a critical virulence factor. In this study, we utilised transposon-directed insertion site sequencing (TraDIS) to identify genes essential for in vitro growth of P. multocida, and combined TraDIS with discontinuous density gradients (TraDISort) to identify genes required for HA capsule production and regulation in this pathogen. Analysis of mutants with a high cell density phenotype, indicative of the loss of extracellular capsule, led to the identification of 69 genes important for capsule production. These genes included all previously characterized genes in the capsule biosynthesis locus, and fis and hfq that encode known positive regulators of P. multocida capsule. Many of the other capsule-associated genes identified in this study were involved in regulation or activation of the stringent response, including spoT and relA that encode proteins that regulate the concentration of guanosine alarmones. Disruption of the autoregulatory domains in the C-terminal half of SpoT using insertional mutagenesis resulted in reduced expression of capsule biosynthesis genes and an acapsular phenotype. Overall, these findings have greatly increased the understanding of hyaluronic acid capsule production and regulation in P. multocida.